

Programming Add-Ons

for Blender 2.5

Writing Python Scripts

with Eclipse IDE

Witold Jaworski

version 1.01

Programming Add-Ons for Blender 2.5 - version 1.01

Copyright Witold Jaworski, 2011.

wjaworski@airplanes3d.net

http://www.airplanes3d.net

Reviewed by Jarek Karpiel

I would also to thank Dawid Ośródka and PKHG (from the blenderartists.org forum) for their comments.

This book is available under Creative Commons license Attribution-NonCommercial-NoDerivs 3.0 Unported.

ISBN: 978-83-931754-2-0

http://www.airplanes3d.net/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1 Software Installation 3

Copyright Witold Jaworski, 2011.

Table of Contents

Table of Contents .. 3

Introduction ... 4

Conventions .. 5

Preparations .. 6

Chapter 1. Software Installation .. 7

1.1 Python ... 8

1.2 Eclipse ... 10

1.3 PyDev .. 13

Chapter 2. Introduction to Eclipse ... 17

2.1 Creating a new project .. 18

2.2 Writing the simplest script ... 24

2.3 Debugging ... 27

Creating the Blender Add-On .. 32

Chapter 3. Basic Python Script ... 33

3.1 The problem to solve ... 34

3.2 Adapting Eclipse to the Blender API ... 39

3.3 Developing the core code .. 48

3.4 Launching and debugging Blender scripts .. 58

3.5 Using Blender commands (operators) .. 65

Chapter 4. Converting the Script into Blender Add-On ... 74

4.1 Adaptation of the script structure ... 75

4.2 Adding the operator command to a Blender menu ... 84

4.3 Implementation of dynamic interaction with the user .. 92

Appendices .. 98

Chapter 5. Installation Details .. 99

5.1 Details of Python installation ... 100

5.2 Details of the Eclipse and PyDev installation .. 103

5.3 Details of the PyDev configuration .. 110

Chapter 6. Others .. 113

6.1 Updating the Blender API predefinition files .. 114

6.2 Importing an existing file to the PyDev project .. 118

6.3 Details of the Blender scripts debugging ... 124

6.4 What does contain the pydev_debug.py module? .. 129

6.5 The full code of the mesh_bevel.py add-on .. 131

Bibliography ... 134

4 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Introduction

To extend the standard functionality of Blender with new commands, you can use Python scripts. Many useful

add-ons were created this way. Unfortunately, Blender is missing something like an integrated development

environment ("IDE") for the script programmers. "In the standard" you will find only the Text Editor that highlights

the Python syntax, and the Python Console. It is enough to create simple scripts, but begins to interfere when

you work on larger program. Particularly troublesome is the lack of a "windowed" debugger. In 2007, I wrote an

article that proposed to use for this purpose two Open Source programs: SPE (the editor) and Winpdb (the

debugger). Jeffrey Blank published it a few months later on the wiki.blender.org.

In 2009 it was decided that the new, rewritten "from the scratch" Blender version (2.5) will have a completely

new Python API. What's more, developers have embedded in this program the new Python release (3.x), while

previous Blender versions used the older ones (2.x). Python developers also decided to break the backward

compatibility between these versions. In result, the GUI library used by SPE and Winpdb — wxPython — does

not work with Python 3.x. Worse still, no one is working on its update. It seems that the both tools have become

unavailable for newer Blender versions.

I decided to propose a new developer environment, based on the Open Source software. This time my choice

fell on the Eclipse IDE, enriched by the PyDev plugin. Both products have been developed for 10 years, and do

not depend on any particular Python version. (Internally they are written in Java, thus are not exposed to such

problems like SPE and Winpdb, written in Python). To check this solution in practice, I ported all my scripts to

the Blender 2.5 Python API using this framework. Some of my add-ons had to be rewritten from scratch. Based

on this experience I think that this new environment is better than the previous one.

I think that the best way to present a tool is to show it at work. I have described here the creation of a new

Blender command that bevels selected edges of a mesh. (It is a restoration of the "old" Bevel command from

Blender 2.49). This book requires an average knowledge of Python and Blender. (Yet, you may know nothing

about Python in Blender). To understand the part about creating the final add-on (Chapter 4) you should also be

familiar with the basic concepts of object-oriented programming such as "class", "object", "instance", "inher-

itance". When it is needed (at the end of Chapter 4), I am also explaining some more advanced concepts (like

the "interface" or "abstract class"). This book introduces you to the practical writing of Blender extensions. I am

not describing here all the issues, just presenting the method that you can use to learn them. Using it, you can

independently master the rest of the Blender API (creating your own panels or menus, for example).

http://wiki.blender.org/index.php/Doc:Tutorials/Extensions/Python/Editors/SPE

Chapter 1 Software Installation 5

Copyright Witold Jaworski, 2011.

Conventions

In the tips about the keyboard and the mouse I have assumed, that you have a standard:

 US keyboard, with 102 keys (you will find also some comments about a non-standard notebook

keyboard, like the one used by me);

 Three-button mouse (in fact: two buttons and the wheel in the middle. When you click the mouse

wheel, it acts like the third button).

Command invocation will be marked as follows:

MenuCommand means invoking a command named Command from a menu named Menu. More arrows

may appear, when the menus are nested!

Panel:Button means pressing a button named Button in a dialog window or a panel named Panel.

Pressing a key on the keyboard:

Alt - K the dash (“-“) between characters means that both keys should be simultaneously

pressed on the keyboard. In this example, holding down the Alt key, press the K key;

G , X the coma (“,”) between characters means, that keys are pressed (and released!) one

after another. In this example type G first, then X (as if you would like to write „gx”).

Pressing the mouse buttons:

 LMB left mouse button

 RMB right mouse button

 MMB middle mouse button (mouse wheel pressed)

Last, but not least — the formal question: how should I address you? Typically, the impersonal form ("something

is done") is used in most manuals. I think that it makes the text less comprehensible. To keep this book as read-

able as possible, I address the reader in the second person ("do it"). Sometimes I also use the first person ("I've

done it", "we do it"). It is easier for me to describe my methods of work this way
1
.

1
 While coding and debugging I thought about us - you, dear Reader, and me, writing these words - as a single team. Maybe an imaginary

one, but somehow true. At least, writing this book I knew that I had to explain you every topic with all details!

6 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Preparations

In this section, I am describing how to build (install) an appropriate environment for the programmer (Chapter 1).

Then I am introducing you in the basics of the Eclipse IDE and its PyDev plugin (Chapter 2).

Chapter 1 Software Installation 7

Copyright Witold Jaworski, 2011.

Chapter 1. Software Installation

The integrated development environment, described in this book, requires three basic components:

- external (“standard”) Python interpreter (required to let PyDev to work properly);

- one of the Eclipse “packages”;

- the Eclipse plugin: PyDev;

This chapter describes how to set them up.

I assume that you already have installed Blender.

(This book was written using Blender 2.57. Of course, you can use any of its later versions).

8 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

1.1 Python

Blender comes with its own, embedded Python interpreter. Check its version, first. To do it, switch one of the

Blender windows to the Python Console, and read the version number written in the first line (Figure 1.1.1):

Figure 1.1.1 Reading the version number of the embedded Python interpreter.

Blender on the illustration above uses Python 3.2 (it is Blender 2.57). You should always install the same ver-

sion of the external Python interpreter, although minor differences in them are not the problem.

You can download the external Python interpreter from the www.python.org (Figure 1.1.2):

Figure 1.1.2 Downloading the external Python interpreter (from http://www.python.org/download)

As you can see, Python currently has two branches due to the lack of backward compatibility: 2.x and 3.x. We

are interested in the latter.

Download the same Python
version, as used in your Blender

Switch into the
Python Console

This is the version number of
the Python interpreter

http://www.python.org/
http://www.python.org/download

Chapter 1 Software Installation 9

Copyright Witold Jaworski, 2011.

 Before downloading the external Python interpreter, you can also check if you do not have it already in-

stalled on your computer. Try to invoke in the command line following program:

 python –-version

 If you have it installed, it will launch the console, as in Figure 1.1.1. You can read its version number, there.

It may happen that you will not find on www.python.org exactly the same Python version that is embedded in

your Bender (I mean the difference "after the dot" of the number). Use the newer version, in such case. Blender

2.5 always uses its embedded interpreter, even when the external Python is available in your system. For ex-

ample, if you use version 3.3 of Python as the external interpreter, there should be no problem in writing scripts

that are interpreted internally in Blender by its embedded Python in version 3.2. (Practically, the differences be-

tween minor Python versions are not big).

Run the downloaded program as required in your operating system. There is just an installer for Windows

(Figure 1.1.3). (To install it, you need an account with the Administrator privileges, on your computer):

Figure 1.1.3 Selected screens of the Python installer (for Windows)

There is nothing special in this process. Just accept the default settings and keep pressing the Next button to

the end of the installation (detailed description — see section 5.1, page 100).

http://www.python.org/

10 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

1.2 Eclipse

Go to the downloads directory on the Eclipse project page (www.eclipse.org/downloads — Figure 1.2.1):

Figure 1.2.1 Downloading an Eclipse package (this screen was captured on March 2011)

When you look at the descriptions on the page, you will notice that Eclipse is available in many different pack-

ages. Each of them is prepared for the specific language / programming languages. (You can still create a C ++

program in any other package, for example "Eclipse for PHP Developers". Just add the appropriate plugins)!

What you see are just typical packages, prepared "in advance". They correspond to the most common needs.

There is no any special “Eclipse for Python” package, so I would propose to download Eclipse for Testers or

Eclipse IDE for C/C++. (Always choose the smallest and least-specific package). The installation details are

described on page 103.

Eclipse developers do not prepare any Windows installers. In the downloaded file, you will find a zipped folder

with ready-to-use program. Just unpack it — for example, to the Program Files (Figure 1.2.2):

Figure 1.2.2 Eclipse “installation” — just unzipping the downloaded file

Select the smallest
package

The downloaded *.zip file
contains a folder with a pro-
gram ready to use.

Just unpack it to the Program
Files directory.

http://www.eclipse.org/downloads

Chapter 1 Software Installation 11

Copyright Witold Jaworski, 2011.

The main program is eclipse\eclipse.exe (Figure 1.2.3). You can add its shortcut to your desktop or menu.

Figure 1.2.3 Running Eclipse (for Windows)

 Eclipse requires the Java Virtual Machine. Most likely, you have it already installed on your computer. If not

— download it from the www.java.com (details — page 103).

When you start the eclipse.exe program, it displays a dialog where you can specify the folder for future projects.

This location is called a “workspace” (Figure 1.2.4):

Figure 1.2.4 The question about the actual workspace

Eclipse creates a separate subdirectory for each project, here. Such folder contains Eclipse internal data files

and your scripts. (You can also place there a shortcut to a script located elsewhere on the disk). Each work-

space directory contains, in addition to the projects folders, its own set of Eclipse preferences. It includes con-

figuration of the Python interpreter. The workspace folder is created in the user home directory
1
. (In this example

it is the directory of user W4979721). Usually it is enough to have just one workspace.

1
 Note for the Windows users: My Documents folder is also located there. This is just the Unix/Linux convention. If you are used to keep all

your data in the My Documents folder - change the path in Workspace Launcher dialog. Eclipse will create a workspace folder at the speci-

fied location.

Run it, to start
Eclipse

The user’s home directory.
(Beware, it is not My Documents!)

Here you can permanently turn off this dialog

http://www.java.com/

12 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Then the Unable to Launch message may appear (I have got it on my Eclipse 3.6 — see section 5.2, Figure

5.2.5). Do not worry about it! Eclipse is always trying to open your last project, saved in the folder. Yet, on the

first run, there is nothing there. So the program “is surprised”, and displays such a warning.

On the first run, Eclipse displays window with the Welcome tab. It contains shortcuts to several Internet sites,

related to this environment (Figure 1.2.5):

Figure 1.2.5 Eclipse screen on the first run

Now we have to add to Eclipse the PyDev plugin, which will adapt this environment for the Python scripts.

Chapter 1 Software Installation 13

Copyright Witold Jaworski, 2011.

1.3 PyDev

For PyDev installation use the internal Eclipse mechanism, designed for the plugins.

 NOTE: To perform steps, described in this section, you have to be connected to the Internet

To add a plugin, use the HelpInstall New Software command (Figure 1.3.1):

Figure 1.3.1 Opening the Install wizard for the Eclipse plugins

In the Install dialog, type the following address: http://pydev.org/updates (Figure 1.3.2):

Figure 1.3.2 Adding the PyDev location to the list of the plugin sources

Then press the Add button. That opens the Add Repository dialog, which you can simply confirm.

Adds new components to
this Eclipse environment

Type the address of the special
PyDev project directory…

… and press
this button!

http://pydev.org/updates

14 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Eclipse will read it, and after a moment it will display the contents of this repository (Figure 1.3.3):

Figure 1.3.3 Selecting the PyDev plugin to install

Select the PyDev plugin from there then press the Next button. After passing some helper screens (one with

detailed list of selected components, another with the license agreement — see section 5.2, page 103), the

installation progress window will appear (Figure 1.3.4):

Figure 1.3.4 The installation progress window

Select this
component…

… then press
Next

Chapter 1 Software Installation 15

Copyright Witold Jaworski, 2011.

After downloading, Eclipse will display the certificates of Aptana
1
 PyDev for your confirmation. Finally, you will

see a message about the need to restart Eclipse (Figure 1.3.5):

Figure 1.3.5 Final window

Do it as the precaution.

Eclipse saves separate configuration for each workspace (Figure 1.2.4). The default Python interpreter is also

among these parameters. Let's set it straight away. To do it, invoke the WindowPreferences command

(Figure 1.3.6):

Figure 1.3.6 Setting up Eclipse configuration for the current workspace

1
 PyDev was created in 2003 by Alex Totic. Since 2005, the project has been run by Fabio Zadrozny. At that time PyDev had two parts:

Open Source - PyDev, and commercial - PyDev Extensions (remote debugger, code analysis, etc.). In 2008 PyDev Extensions were ac-

quired by Aptana. In 2009 Aptana "freed" PyDev Extensions, combining them with PyDev (version 1.5). In February 2011 Aptana was ac-

quired by Appcelerator. PyDev portal is still on the Aptana/Appcelerator servers and Fabio Zadrozny continuously watches over its devel-

opment.

16 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

In the Preferences window expand the PyDev node and select the Interpreter - Python item (Figure 1.3.7):

Figure 1.3.7 Invoking the automatic configuration of the Python interpreter

Then just press the Auto Config button. If your Python folder is present in the PATH environment variable,

Eclipse will find and configure your interpreter (Figure 1.3.8):

Figure 1.3.8 Configured Python interpreter

If you have two different Python versions on your computer — PyDev will list them in a dialog window, asking to

select one. If PyDev displays a message that it cannot find any Python interpreter — perform the manual con-

figuration (see section 5.3, page 110).

Select this
item….

… and press
this button

Configured Python
interpreter

Press OK to confirm

Chapter 2 Introduction to Eclipse 17

Copyright Witold Jaworski, 2011.

Chapter 2. Introduction to Eclipse

Our project starts here. It will be an adaptation of the Bevel modifier. You will learn more about this in the next

chapter. In this chapter, except the names, our project has nothing common with Blender, yet.

At the beginning, I want to show the Eclipse basics. I will do it on the example of a simple Python script, which

writes "Hello" in the console window. I assume that the reader has some experience in Python, and has already

used other IDEs. This is not a book about any of these issues. My goal here is to show how to perform in

Eclipse some basic steps, which are well known to every programmer.

18 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

2.1 Creating a new project

Invoke the FileNewProject… command (Figure 2.1.1):

Figure 2.1.1 Opening a new project

It opens the New Project window. Expand the PyDev folder there and select the PyDev Project wizard (Figure

2.1.2):

Figure 2.1.2 Selection of the appropriate project wizard

When the wizard is selected, press the Next button.

Select this
wizard

Chapter 2 Introduction to Eclipse 19

Copyright Witold Jaworski, 2011.

On the PyDev Project pane enter the Project name. Let’s start here right away a project that later will be used

to implement the script for Blender. Hence, I give it the name Bevel (Figure 2.1.3):

Figure 2.1.3 Filling the screen of PyDev Project pane

Set the Project type to Python and the Grammar Version to 3.0. Leave the rest of parameters unchanged and

click the Finish button.

The PyDev wizard will ask you about creating the new project perspective (Figure 2.1.4):

Figure 2.1.4 A question from the wizard.

(In Eclipse, the screen layout is called “project perspective”). Just confirm this question (Yes).

Type the name of the project

Select Python, an the grammar of the 3.0 version

Once it is set, press this button

Turn this option off, to avoid this question in the future

You can also choose this option —
to let PyDev to do automatically this
required step (see page 21)

20 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Beware: if you forgot to configure the Python interpreter, the wizard would display an error and the Finish button

would be grayed out (Figure 2.1.5):

Figure 2.1.5 The error reported by the wizard, when the Python interpreter is not set

When you have got such an error, use the shortcut displayed by the wizard in the window. It opens the

Preferences dialog and allows you to complete the missing configuration (see section 5.3). Once it is done, re-

turn to the wizard to create the new project.

The PyDev wizard creates in Eclipse an empty Python project (Figure 2.1.6):

Figure 2.1.6 PyDev perspective of a new project

If you forgot to set the Python

interpreter, you can still do it

using this shortcut

The wizard displays error messages
in the window header

As long as there is an error in the head-

er, the Finish button is grayed out

Project
structure

Here you will see the structure of
the edited file (procedures, glob-
al variables, classes, etc.)

Selection of the project perspective.
(Something like the screen layout in
Blender)

The place for
script editor pane

The place for the
other windows

Chapter 2 Introduction to Eclipse 21

Copyright Witold Jaworski, 2011.

What you see is the default PyDev screen layout. In Eclipse,

just like in Blender, you can have many alternative "screens".

They are called perspectives here. Every newly created project

contains the default PyDev perspective. When you try to debug

your script for the first time, another perspective will be added

(Debug).

Let's start adaptation of the current perspective with removing

the unnecessary Welcome pane (Figure 2.1.7):

Then add to this project a subfolder for the scripts: select the project folder, and from its context menu select the

NewSource Folder command (Figure 2.1.8):

Figure 2.1.8 Adding a subfolder for the scripts

Type the subfolder Name on the wizard pane — let it be src (Figure 2.1.9):

Figure 2.1.9 Folder wizard pane

Finally, press the Finish button. The wizard will create the new subdirectory src in the project directory.

Figure 2.1.7 Closing the Welcome tab.

Click here, to
close this tab

Project context menu

(click RMB to open)

Write here the name of
this new folder

22 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

We will create an empty script file, now. Expand the context menu of src folder, and invoke the NewPyDev

Module command (Figure 2.1.10):

Figure 2.1.10 Invoking the new script (“module”) wizard

It will open another PyDev wizard window. Give this file a name suitable for the Blender add-on: mesh_bevel,

select the <Empty> item from the Template list (Figure 2.1.11):

Figure 2.1.11 PyDev module wizard window

Finally, press the Finish button.

If you have on your computer very restrictive firewall, you will receive now a request to open a TCP port. (I received this
comment from my reviewer). It is about accessing the 127.0.0.1 loopback. Anyway, I have not seen this myself, although my
firewall is not very permissive.

The context menu of src

folder (click RMB to open)

Type the file name here
(without the .py extension)

Select this script
template

Chapter 2 Introduction to Eclipse 23

Copyright Witold Jaworski, 2011.

This way PyDev has added an empty script file to our project. It contains just a header docstring comment, with

the creation date and the author name (Figure 2.1.12):

Figure 2.1.12 The new, empty script

Summary

 In this section, we have created a new Python project using the PyDev Project wizard (page 18);

 Name of the project is an arbitrary matter. In this example, I called it “Bevel” (page 19), because in the

further chapters of this book it will serve us to implement the Bevel command in Blender 2.5. For the same

reason I gave the script file the name appropriate for the Blender add-on: "mesh_bevel.py" (page 22).

 Eclipse requires in its project a special source folder (page 21) for the scripts. (You cannot place them in

the root directory);

 You can use several predefined templates for your script (page 22). For the Blender script I have just se-

lected the <Empty> template;

An asterisk indicates that
this file contains unsaved
changes

The user name, placed
in the script docstring

24 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

2.2 Writing the simplest script

The script that we will write in this section will display the "Hello" text in the Python console. To see this result,

we need to add the panel with the Python console to our environment, because PyDev has not added it by de-

fault. To do this, click on the tab at the bottom of the screen (because there we will add the console). Then in-

voke the WindowShow ViewConsole command (Figure 2.2.1):

Figure 2.2.1 Adding the Console tab

By default, this output console shows the result of the script. Dynamic languages, like Python, offer also some-

thing like "interactive console". It runs the Python interactive interpreter, allowing you to check some expres-

sions while writing the script. So let's add it to our windows (Figure 2.2.2):

Figure 2.2.2 Switching to the interactive Python console

Invoke the PyDev Console command from the pane menu, then select the Python console option in its dialog.

Select the PyDev
console

Select this kind
of the console

Pull down
this menu

Click on this tab…

…then add the Console

Chapter 2 Introduction to Eclipse 25

Copyright Witold Jaworski, 2011.

So here you have the panel with the Python interpreter, where you can check your code snippets (Figure 2.2.3):

Figure 2.2.3 Interactive Python console

One of the useful PyDev features is the code autocompletion. It works both in the script editor window, and in

the interactive console (Figure 2.2.4):

Figure 2.2.4 Example of the code autocompletion

Autocompletion usually takes effect when you type dot after a name (for example, type "sys." in the console).

Such behavior does not bother writing of the normal code.

Well, let's finish this talk. Eclipse is a very rich environment, so I cannot describe all its functions here. Its time to

write our simplest script (Figure 2.2.5):

Figure 2.2.5 Our script — the first version, of course

You can enter here any Python
expression, to see how it works.

This menu allows you to switch
between the output console and
the interactive Python console

Start typing here…

The list of the functions that

match the entered prefix

Tooltip with the function
description (docstring)

Here you can see the first
code block — the main()
function

26 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

When the script is ready, highlight its file in the project explorer and from the Run menu invoke the Run

AsPython Run command (Figure 2.2.6):

Figure 2.2.6 Launching the script

PyDev will switch the console into the output mode, and you will see there the result of our script — the „Hello!”

text (Figure 2.2.7):

Figure 2.2.7 The result of our script — the text written in the output console

Summary

 We have added to our project new pane with the Python console (page 24);

 You have seen how the code autocompletion works, and how it displays the docstring of selected function

(in the tooltip — page 25);

 We have launched the simplest script and checked its result (page 26);

The output of this script
Here you can switch this
window back to the interac-
tive Python console

1. Select the
script file

2. Invoke this
command

Chapter 2 Introduction to Eclipse 27

Copyright Witold Jaworski, 2011.

2.3 Debugging

To insert a breakpoint at appropriate script line, double-click (LMB) the grey bar at the left edge of the editor

window. Alternatively, you can also open at this point the context menu (with the RMB — Figure 2.3.1):

Figure 2.3.1 Adding a breakpoint

To open it, click the RMB at the line, where you want to insert the breakpoint. Invoke the Add Breakpoint com-

mand from there. Eclipse will mark this point with a green dot with a dash (Figure 2.3.1). (You can remove the

breakpoint in a similar way, double clicking LMB or using the context menu).

To run the script in the debugger, press the bug icon () on the toolbar (Figure 2.3.2):

Figure 2.3.2 Launching a debug session

While launching the debugger, Eclipse always displays information about switching to the Debug perspective.

(On the first run, it will add this perspective to your project). Remember that you have to be in the Debug per-

spective, to be able to step through the script!

Click RMB on this

band, to pull down
its context menu

Inserted
breakpoint

Click here to start debugging. On the first
run, it will display the warning about adding
the new Debug perspective to this project

Select this option, if you do
not want to confirm it every
time

Select this
command

You can also turn on the line numbers of your
code, here. (Some programmers use this feature)

28 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Figure 2.3.3 shows the screen layout of the Debug perspective, and basic controls (and their hot keys) for de-

bugging. Note that the code execution has stopped at our breakpoint:

Figure 2.3.3 Screen layout of the Debug perspective

Green area on the source code marks the line to be executed. When you press now the F6 key (Step over) —

you set the c variable and move it to the next line (Figure 2.2.4):

Figure 2.3.4 The state after pressing the F6 key (Step over)

The script execution has
stopped here, at this breakpoint

The script line that will be

executed on the next step

Do not worry about this message that your PyDev
lacks an optional component.
(It was in PyDev 1.6. In PyDev 2.1 it does not appear)

Global and local variables:
preview or change

Current stack of
called functions

Eclipse marks this way the
occurrence (or the change) of
a variable!

This line has just been executed

Resume

F8

Step Into

F5

Step over

F6

Step Return

F7

Terminate

Ctrl - F2

Chapter 2 Introduction to Eclipse 29

Copyright Witold Jaworski, 2011.

When you press the F6 button again, the c string is “printed” and you leave the main() function (Figure 2.3.5):

Figure 2.3.5 The state just after leaving the function

Notice that the top line (main() [mesh_bevel.py], visible on Figure 2.3.4) has been removed from the stack. Yet

the current line is still stuck on the call to this function in the main module (<module> [mesh_bevel.py]). In this

way the PyDev debugger indicates the end of the function. It was the last line of our script. If you press the F6

key again, you will find yourself in an internal PyDev module (Figure 2.3.6):

Figure 2.3.6 The process state after another Step over command (i.e. pressing the F6 button again)

This helper script implements tracking of user’s programs. (Internally, PyDev uses its remote debugger here. We

also will use it for the Blender scripts). It is better to press the F8 key (Resume) here, to finish the program.

This line has just been
executed — “printing” the
text on the output console !

We have just left main() function.
Now we are in the main module.
Python keeps here some global
variables (__<name>__)

PyDev has opened
its source here!

It is better to finish script
execution with this

Resume command (F8)

Otherwise, the “step by
step” execution will bring
you to a PyDev internal
module!

30 Preparations

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Figure 2.3.7 shows how the debugger screen looks like, when the script execution is completed:

Figure 2.3.7 The state after the Resume command (F8) — the process is completed

You can make minor corrections of the code in the Debug perspective, using the editor pane. However, when

you are going to make serious changes — switch to the PyDev perspective. You have more helper tools there

(Figure 2.3.8):

Figure 2.3.8 Back to the PyDev perspective — for the further work on the code

The stack of the
completed process

The debugger
commands are
inactive It is time to switch back into

the basic PyDev perspective!

The result of the
script execution

Here you can also edit the
code. (It is useful for the
quick corrections)

Switch back to the Python interactive
console, using this menu

Chapter 2 Introduction to Eclipse 31

Copyright Witold Jaworski, 2011.

Summary

 You have learned, how to set breakpoints in your code (page 27);

 We have launched our script in the debugger (page 27). On the first run, PyDev debugger creates a new

Debug project perspective;

 You have learned the basic debugger commands: Step Into (F5), Step Over (F6), Resume (F8) (page

28);

 We have looked at some helper debugger panes: Variables (page 28) and Stack (page 29);

 After the last line of your script, PyDev debugger is still executing its internal code (page 29). Therefore it is

better at this point to Resume (F8) its normal execution;

32 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Creating the Blender Add-On

This is the main part of the book. I am describing here the creation of a Blender add-on. We will begin with the

typical script - a plain sequence of Blender commands that runs "from the beginning to the end" (Chapter 3).

Then we will adapt it for the required plugin interface (Chapter 4). As a result, we will obtain a ready to use add-

on that implements a new Blender command.

Chapter 3 Basic Python Script 33

Copyright Witold Jaworski, 2011.

Chapter 3. Basic Python Script

In this chapter, we will prepare a script that bevels selected edges of a mesh. I used this example to show in

practise all the details of developing Blender scripts in the Eclipse environment. You will also find here some

tips, how to solve typical problems that you encounter during this process. One of them is finding in the Blender

API the right class and operator that support the functionality we need! (I think that still nobody, except the few

Blender API developers, is familiar with the whole thing…).

34 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

3.1 The problem to solve

In Blender 2.49, pressing the W key opens the Specials menu. You can invoke the Bevel command from there,

to chamfer the selected mesh edges (Figure 3.1.1):

Figure 3.1.1 Blender 2.49 — invoking the Bevel command

In effect, you will see the bevels along selected edges. To change their width, just drag the mouse. To obtain a

“rounded” bevel width value, hold the Ctrl key down (Figure 3.1.2):

Figure 3.1.2 Blender 2.49 — setting the bevel width

Notice, that it is not possible to enter the exact, numerical width during this operation. It was a minor drawback

of the Bevel command in Blender 2.49.

1. Select the edges to
be beveled.

3. Invoke
the Bevel
command

2. Press W , to

pull down this
menu

Move the mouse, to
change the bevel width

Mouse location when
the Bevel command
has been invoked

Current mouse
location

Current bevel width. (Hold down the

Ctrl key to change it by 0.01).

Chapter 3 Basic Python Script 35

Copyright Witold Jaworski, 2011.

Clicking the LMB ends the Bevel operation. Where it is necessary, Blender adds to the result mesh additional

edges (all its faces must have no more than 4 vertices). (Figure 3.1.3):

Figure 3.1.3 Blender 2.49 — result of the Bevel command

It’s simple and quick, isn't it?

Blender 2.5 lacks such "destructive" Bevel command, so many users complain about it. It has only the Bevel

modifier, which chamfers the mesh in a "non-destructive" way (Figure 3.1.4). (This modifier was available also in

Blender 2.49):

Figure 3.1.4 Blender 2.57 — adding the Bevel modifier

To obtain the same effect in Blender 2.5, you have to add the Bevel modifier to the mesh object. Initially, it will

bevel all the edges of the mesh. However, if you switch the Limit Method to the Weight, Blender will display

another row of options on the modifier panel. Choose the Largest mode, from there. It will remove all the cham-

fers from the mesh, because initially all its edges have the Bevel Weight = 0. (This is the default value).

You can dynamically change the width of the Bevel modifier, dragging over the Width control the mouse with the

LMB pressed (it is a slider). You may play around with it for a while. Set it at the end to the appropriate value

(for example — 0.1 Blender Units, as it is shown in Figure 3.1.4).

Additional
edges

1. Add the Bevel
modifier to the object

3. Set up the

bevel Width

2. Switch it to
Weight, Largest.

 We are in the
Edit Mode

36 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

How to change the Bevel Weight values of the selected edges? Open the Toolbox (T). In the Mesh Options

panel, switch the Edge Select Mode into the Tag Bevel (Figure 3.1.5):

Figure 3.1.5 Beveling selected edges with the Bevel modifier

Turn on the edge selection mode of the mesh (Figure 3.1.5). Holding down the Ctrl key, click some edges with

the RMB . Blender will add a bevel under each of them (by clicking, you are flipping their Bevel Weght to 1.0).

 Notice that the edges with the bevel tag are marked yellow. This helps you to figure out what is currently

set on the mesh.

Using the Bevel modifier, you can have chamfered edges on the final shape, while the original cube mesh is not

altered. This effect is useful in many cases, because it lets you to avoid overcomplicated meshes. Therefore, the

beveling with the modifier is often referred as the "non-destructive" (in the opposite to the "destructive" Bevel

command, which we have used in Blender 2.49).

To obtain the “real” beveled edges in Blender 2.5, as in the “destructive” command from Blender 2.49, we have

to Apply the Bevel modifier (Figure 3.1.6):

Figure 3.1.6 Applying the modifier

3. Click the edge

with Ctrl + RMB ,

to bevel it

The edges with Bevel
Weight = 1 are marked
in yellow

2. Turn on the
edge mode

1. Turn on the Tag
Bevel mode

Press this button, to
convert the effect of
the modifier into “real”
mesh

Chapter 3 Basic Python Script 37

Copyright Witold Jaworski, 2011.

When you press the Apply button (do it in the Object Mode!) the modifier will disappear, and its beveled edges

become the real part of the mesh. Now you can do with them what you want (Figure 3.1.7):

Figure 3.1.7 Removing the bevel weights that are left after the modifier

On the end, you should click (Ctrl - RMB) the yellow edges that are left after this operation. It will remove their

bevel tags, making the mesh ready for the eventual another Bevel modifier (Figure 3.1.8):

Figure 3.1.8 Blender 2.57 — result of the Bevel modifier application

You have to admit that there was a lot of "clicking". Although the Bevel modifier has also its advantages, many

Blender 2.5 users would like to have also a simple, “destructive" Bevel.

In this chapter, we will write a Blender script that will use the Bevel modifier to create the "destructive" version of

this operation. In general, it will repeat the sequence of steps that I did manually in this section. In the next

chapter, we will convert this script into a professional Blender add-on.

Additional edges —
(as in Figure 3.1.3)

It is better to flip the Bevel Weight of
these edges back to 0.0. Otherwise,
another Bevel modifier will chamfer them!

Beveled mesh edges, with
the Bevel Weight = 0

38 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Summary

 Blender 2.5 lacks the “destructive” Bevel command. Such command was available in the previous Blender

version (2.49 — see page 34);

 You can obtain the same “destructive bevel” effect in Blender 2.5 by applying its Bevel modifier (page 35 -

37). To not repeat these operations manually, we will create a script that will execute them all at once. In

this way we will add to Blender 2.5 the missing functionality;

Chapter 3 Basic Python Script 39

Copyright Witold Jaworski, 2011.

3.2 Adapting Eclipse to the Blender API

To write scripts for Blender in an easier way, we need to "teach" PyDev the Blender API. The code autocomple-

tion should be able to suggest object methods and fields, just as it does for the standard Python modules. For-

tunately, PyDev has such a possibility. We have just to provide it a kind of simplified Python file that contains

only declarations of the classes, their methods and properties. The very idea is similar to the header files used

in C/C++. To distinguish these "header files" from ordinary Python modules, PyDev requires them to have the

*.pypredef extension (a derivate from “Python predefinition”).

I modified Campbell Barton's script, which generates the Python API documentation (the one that you can see

on the wiki.blender.org). Using it, I was able to create the appropriate *.pypredef files for the entire Blender API,

except the bge module. You can find them in the data that accompanies this book. Just download the

http://airplanes3d.net/downloads/pydev/pydev-blender.zip file and unzip it into the folder with Blender binaries

(Figure 3.2.1):

Figure 3.2.1 Unpacking additional files to the Blender folder

 Place both *.py files and doc folder in the directory that contains the blender.exe executable (Figure 3.2.2):

Figure 3.2.2 The files required to follow this book

Place the content of this packed
file in the Blender folder

The doc folder contains Blender API predefinition files, and

the script that generates them (see section 6.1, page 114).

Two additional files:

 pydev_debug.py is a helper module, used to debug

Blender scripts in Eclipse;

 Run.py is the template of a “stub script” (we will

discuss it in detail in subsequent sections of this

chapter)

In general, the pydev_debug.py file

can be placed in any directory listed
in the sys.path (see page 129) —
check this on Linux or Mac.

http://www.blender.org/documentation/250PythonDoc/index.html
http://airplanes3d.net/downloads/pydev/pydev-blender.zip

40 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

When the predefinition files are in place, we need to alter the project configuration. To do it, invoke the

ProjectProperties command (Figure 3.2.3):

Figure 3.2.3 Opening the project configuration window

It opens the project Properties window. On its left pane select the PyDev – PYTHONPATH section. It will display

several tabs on the right side. Select from them the External Libraries tab (Figure 3.2.4):

Figure 3.2.4 Navigating to the PyDev - PYTHONPATH:External Libraries pane

Add here (Add source folder) the full path to the doc\python_api\pypredef folder (Figure 3.2.5):

Figure 3.2.5 PyDev PYTHONPATH configuration

1. Highlight the
project folder

2. Open its
Properties

1. Select
this section

2. Open this tab

1. Use this button to add the full
path to doc\python_api\pypredef

2. Press this button, when the
library list has been changed

Chapter 3 Basic Python Script 41

Copyright Witold Jaworski, 2011.

After every change made to PyDev PYTHONPATH, make sure that you have pressed the Force restore

internal info button (Figure 3.2.5). In response, Eclipse will display for a few seconds information in the status

bar about the progress of this process
1
.

From this moment, when you add to script appropriate import statement, PyDev will use in its autocompletion

the whole hierarchy of the Blender API (Figure 3.2.6):

Figure 3.2.6 Code autocompletion for the Blender API

The list of the class members appears after typing a dot. What's more, when you hold the mouse cursor for a

while over a method or an object name — PyDev will display its description in a tooltip (Figure 3.2.7)

Figure 3.2.7 Displaying the descriptions

1
 This method of using *.pypredef files differs from the one that is described in the documentation on the www.pydev.org. The problem is

that following this "official" version (adding the folder to the Predefined Completions list) I could not obtain the proper code completion!

Add this import statement, first!
Nothing will work without it!

Then type a dot to open the
list of these class members

Hold the mouse cursor for a while
over a method or property — and
PyDev will display its description

Use these shortcuts to go to the declaration of

this item. This is useful to read the descriptions

of class properties.

http://www.pydev.org/

42 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

The tooltip with method description disappears, when you move the mouse outside. You can also click on the

reference link, placed in its first line (see Figure 3.2.7). This link opens the source file on the line with appropri-

ate declaration (Figure 3.2.8):

Figure 3.2.8 Property declaration in the predefinition file (bpy.pypredef), opened using the tooltip reference link

From the PyDev point of view, such a declaration is located in the predefinition file (bpy.pypredef). That’s why it

is opened as the source code. You can use this effect to read more about a particular class property (field). The

tooltip displays so called “documentation string” (docstring), placed just below the function (method) declaration.

Unfortunately, the Python standard does not provide docstrings for any kind of variables. (The class or object

field is for the Python interpreter just a variable). Thus, using the tooltip link to the declaration of the field is the

quickest way to read its description. (Most of the Blender API fields have docstrings).

By the way, if you have opened the bpy module, look at its structure in the Outline pane (Figure 3.2.9):

Figure 3.2.9 A fragment of the Blender API structure, shown in the Outline panel

Properties also have docstrings, which
are not displayed in the tooltips!

The objects collection
is the field of the
BlendData class

All these fields are
declared as the class
properties — but it is
just a defect of the
*.pypredef declarations!

Chapter 3 Basic Python Script 43

Copyright Witold Jaworski, 2011.

Notice that the structure of the bpy module, visible in the Outline pane, may be something of a “training aid”.

You can interactively “walk around” the whole Blender Python API, here. I would propose to start such a “trip”

with collapsing this tree to its root nodes (Figure 3.2.10):

Figure 3.2.10 The root structure of the Blender API

Here you can see the basic API elements:

bpy.data provides access to the data of the current Blender file. Each of its fields is a collection of

one type of objects (scenes, objects, meshes, etc. — see Figure 3.2.9);

bpy.context provides access to the current Blender state: the active object, scene, current selection;

bpy.ops contains all Blender commands (operators). (In the Python API, each command is a

single method of this class);

bpy.types contains definitions of all classes that are used in the bpy.data, bpy.context and

bpy.ops structures;

When you look inside bpy.types, you will see an alphabetical list of all classes used in the API. An exception

from this order is the bpy_struct structure, located on the first place. This is the base class of all other API clas-

ses. Its methods and properties are always available in each Blender object (Figure 3.2.11):

Figure 3.2.11 bpy_struct: the base class of all Blender API classes

bpy.data is a field of the
bpy module, providing an
instance of the BlendData
class

Click here, to collapse the
bpy structure

All other Blender API
classes inherit from
bpy_struct its methods
and properties

44 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Another thing is that bpy_struct is a “fake” class. In fact, it is a C-language structure that lies behind the API

implementation. That is why its methods may not be fully implemented in the derived classes. For example —

bpy_struct has a set of collection methods, like items(). All collection classes (for example — MeshEdges, the

collection of MeshEdge objects) reuse it and implement only their specific methods, like add() (Figure 3.2.12):

Figure 3.2.12 Derived Blender API classes — the declaration of their methods and properties

Of course, all the classes that represent the single elements (like MeshEdge) have their items() method empty

(and also many other bpy_struct methods and properties).

The inheritance of the items() method in every Blender API collection class obscures the results of automatic

code completion. PyDev reads from the base class definition, that each of them contains just bpy_structs. For-

tunately, it is possible to “suggest” PyDev the appropriate type of a variable. Just put earlier in the code a line

that assigns to this variable the appropriate type (Figure 3.2.13):

Figure 3.2.13 “Variable declaration” — a workaround of the Blender API collection type problem

The “declaration”. It forces
PyDev to assume that cube
is a bpy.types.Object

Thanks to this
declaration, you
can see the Object
members on the
autocompletion list

All the standard collection methods of
this class are derived from bpy_struct.
This definition contains only its specific
methods, like add().

An example of property, declared in the
predefinition file.
Its type is assigned as its value (it is the
autocompletion requirement)

Chapter 3 Basic Python Script 45

Copyright Witold Jaworski, 2011.

In practice, you should add such "declaration line" only for a moment, when you need to use the automatic code

completion. Always place it in the code above the line where this variable receives its first "real" value. In this

way, your script will work correctly even if you forget to comment out this "declaration".

Anyway - PyDev detect such lines, because it treats them as "unused variables". It marks them with appropriate

warning (Figure 3.2.14):

Figure 3.2.14 PyDev warnings at each “type declaration” line

It is a good practice to look into to the Problems tab, from time to time. You will see there all the lines, which

you have forgotten to comment. Using this list, you will be able to fix them immediately.

To quickly figure out where in the entire API hierarchy is a specific field or method, highlight its name in the edi-

tor and open its context menu (RMB). Invoke the Show InOutline from there. In response, PyDev will high-

light the appropriate element in the Outline pane (Figure 3.2.15):

Figure 3.2.15 Finding a member in the hierarchy of bpy classes.

If you have forgotten to comment
out this line — just check the
Problems tab!

46 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

So far we have discussed the bpy.types branch, only. What about operators (bpy.ops)? There are plenty of

them! To not get lost among them right now, browse their modules (classes), first: action, anim, armature, …

and so on. Let’s expand the bpy.ops.brush module (Figure 3.2.16):

Figure 3.2.16 Example of operator declaration

Each operator module (bpy.ops.brush, for example) is declared as a separate class, which has many methods.

Each of these methods is an operator. Note that you can always invoke every operator with no arguments —

because each of these arguments is named and optional (i.e. has the default value).

It seems that this section has become an introduction to the Blender API architecture. To finish the topic started

on page 43, I have enumerated below the remaining API modules. They are much smaller than the main mod-

ules (bpy.data, bpy.context, bpy.types, bpy.ops), because contain just a few classes and/or functions:

bpy.app various information about the program itself: version number, the path to the executable

file, compiler flags, etc;

bpy.path helper methods for working with paths and files (similar functionality like in the os.path

standard module);

bpy.props function to create the new class properties, which Blender can display on the panels

(when it is needed). To distinguish them from the ordinary class properties (fields), they

are called "Blender custom properties" or just "custom properties". We will use them in

the next chapter, in the operator class;

mathutils classes that represent some geometric and algebraic objects: Matrix (4x4), Euler,

Quaternion (rotation), Vector, Color. Contains also the geometry submodule with a

few helper functions (line intersection, ray and surface intersection, etc.);

bgl functions that allow scripts to draw directly on the Blender windows (in fact, it contains

most of the OpenGL 1.0 methods);

blf functions that draw the texts on the Blender screen;

I know little about the two remaining modules: aud (Audio) and bge (Blender Game Engine), so I will not elabo-

rate about them.

Each operator is a
single method of its
class

Groups (classes) of
Blender commands

Chapter 3 Basic Python Script 47

Copyright Witold Jaworski, 2011.

Summary

 The Python predefinition files (*.pypredef) allow to extend the scope of automatic code completion. The

predefinition files for nearly all Blender API modules are included in the data accompanying this book (page

39);

 To use the predefinition (*.pypredef) files, add their folder to the PYTHONPATH variable of the PyDev pro-

ject (page 40);

 To let PyDev automatically complete Blender API expressions, add the “importy bpy” statement at the

beginning of your script (page 41);

 The tooltips with detailed descriptions of methods can be used for the further exploration of The Blender

API (page 41);

 The Python standard does not allow having docstrings about fields (class properties). The workaround for it

is to use the link to their declaration, placed by PyDev on the first line of each tooltip. It opens the predefini-

tion file in the Eclipse editor. You can read from there the description of the selected class field (page 42).

 Browsing the structure of the bpy module in the Outliner pane helps you to learn the Blender API (page

44);

 In case of the elements from a Blender API collection, use "variable declarations" (page 44) to obtain the

correct autocompletion;

48 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

3.3 Developing the core code

In the most of programming guides, you would immediately see the script code, in a section like this one. Their

authors often present the solution "as the rabbit from the hat", adding just some comments. This guide took a

different approach. I would like to show you here what takes place before writing the first script line: the search-

ing for the solution. This stage is even more important than the “pure” coding.

Let’s prepare a Blender file for the script tests. I would propose to use for this the default cube, with the screen

layout set as shown in Figure 3.3.1:

Figure 3.3.1 Screen layout for the “test environment”

Save this file on a disk, and then import it to the PyDev project (using the Import.. command — see details on

page 118), to have it at hand (Figure 3.3.2):

Figure 3.3.2 The test Blender file, added to the Eclipse project

Python Console

3D View

Outliner

Properties

Just click to open it!

Chapter 3 Basic Python Script 49

Copyright Witold Jaworski, 2011.

The goal of this section is to create a script code that will tag bevel (see page 36) the selected mesh edges.

Finding the way of adding the Bevel modifier using Python we will leave for later. For the purpose of the tests in

this section, simply add it manually (Figure 3.3.3):

Figure 3.3.3 Preparation of the test object

To look for the mesh objects responsible for the Bevel effect, use the Outliner editor. In the Datablocks mode, it

literally shows the entire contents of the file. This is a well-presented structure of bpy.data (Figure 3.3.4):

Figure 3.3.4 Finding an object in the Outliner window (Datablocks mode)

Find there the Objects collection. Expand it, to see the individual objects that are present in this scene. One of

them — Cube — is the active one (it implies its name, displayed at the bottom of the 3D View editor).

Add this modifier
manually, for now

Switch to this
mode

This is our object

Select the Weight,
Largest options

50 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Cube is our test object. You can find its mesh in the Data property (Figure 3.3.5):

Figure 3.3.5 Internal structure of an object and its the Data field

(This mesh is also named Cube, but it could have any other name). Examine the mesh properties, to identify

the most important collections: Vertices, Edges, Faces. We are interested in the Edges (Figure 3.3.6):

Figure 3.3.6 Properties of a single mesh edge (an element of the Edges collection)

Let’s expand one of its elements (a MeshEdge object). What we can see here? Something immediately strikes

the eye: the Bevel Weight field. Its current value is 0.0, which probably means no chamfer. So, if we change it to

1.0 (its maximum value), it will bevel this edge, right?

The mesh, assigned
to the object. You
can find in the Data
property

This property seems to be
the thing we are looking for!

Chapter 3 Basic Python Script 51

Copyright Witold Jaworski, 2011.

Let us verify this assumption (Figure 3.3.7):

Figure 3.3.7 An attempt to change manually the Bevel Weight value

Set the Bevel Weight of the first edge to 1.0 — and nothing happens! What is going on!? After all, you can read

from the tooltip of this property that it i s the weight used by the Bevel modifier!

Maybe we are just looking from the wrong side? We are not sure where exactly on this mesh is the edge #0…

Let’s look at it from the other sides (Figure 3.3.8):

Figure 3.3.8 Closer examinations of the mesh data

There is no trace of the beveled edge, on all the sides. On the other hand, look carefully at the properties of this

edge #0. There is something wrong with them. Why the Select field is “checked”!? We just have viewed this

cube from all sides, and none of its edges is selected! It seems that the Outliner shows the wrong data!

I have changed this value
— and nothing happens?!

This description
confirms our
assumption!

Maybe we have looked
on the wrong side?
Unfortunately, there is
no bevel on the bottom!

By the way, why is this edge marked
as the selected one?
After all, there is nothing selected on
this mesh in the 3D View!

52 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Let’s try to switch into the Object Mode (Figure 3.3.9):

Figure 3.3.9 The same properties, after switching from the Edit Mode to the Object Mode

It’s interesting: values, displayed in the Outliner, have been changed. The edge #0 is not marked as selected (its

Select field is off). In addition, the current Bevel Weight value is 0.0. It seems that everything we have changed

in the Edit Mode has been silently ignored. Or perhaps we should try to do the same in this mode? Maybe it will

work in the Object Mode, since the Select value has become real?

In the Object Mode, I have changed the Bevel Weight to 1.0 — and it works as we assumed! (Figure 3.3.10):

Figure 3.3.10 Changing the Bevel Weight in the Object Mode

In the Object Mode, the
Outliner displays for the same
edge different (correct) values!

The new value of
the Bevel Weight
is properly reflected
on the mesh!

This is the
edge #0

Chapter 3 Basic Python Script 53

Copyright Witold Jaworski, 2011.

 Current Blender version (2.58) ignores all changes made in the Edit Mode with a script or the Outliner

datablock controls. Everything works properly in the Object Mode. They have to fix it in Blender 2.6.

It seems that we have identified the property that should be changed by the script to tag bevel the selected edg-

es. Now we have to find their Python API names (Outliner displays their “human readable” labels). It is very

simple, because Blender displays the “Python name” of each control in its tooltip (Figure 3.3.11):

Figure 3.3.11 Identification of the Python API name doe a control form the Blender screen

There is only a problem with the collections, because they do not have any tooltips (Figure 3.3.12):

Figure 3.3.12 The problem with the identification of collection names

Usually, collections in Python have the same name, but written in lower case, and each space is replaced with

the underscore. However, if you want to make sure, you can verify it in the so-called RNA (Figure 3.3.13):

Figure 3.3.13 Verification of the Python API name in the RNA structure of the collection parent object

When you hold the mouse for
a while over a field, you will
see its tooltip with a description

This is the name of this field
in the Blender Python API.

Unfortunately, Blender does not
display tooltips for collections!

1. Expand the

RNA of this object

3. Find the field of this class

that seems to fit, and expand its
properties

(The name of the Python API
collection is usually the same
as its label, but written in lower
case)

2. Expand its Properties

(You have here just all
the fields of this object
class)

4. Check whether its label —
the RNA Name field — has
the name of the property you
are looking for

54 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

It looks that the "path" of the Python API names to the mesh edges is: Object.data.edges. Let's check it at once

in the Blender Python Console (Figure 3.3.14):

Figure 3.3.14 Verification of the "name path" to a Blender API object

First, get from current context (bpy.context) a reference to the active_object (it is our Cube). Store it in helper

cube variable. Then check if the cube.data.edges collection has the edge #0 (we have changed it in the

Outliner). It has. So, let’s check the Bevel Weight of this edge (Figure 3.3.15):

Figure 3.3.15 Verification of API field value

So far, everything works fine — the edge

#0 has its bevel_weigth = 1.0.

There is yet another test to do: use this

Python expression to change the bevel

weight of another edge.

To not type again the entire "path" to this

expression, just press the cursor key ()

in the console. (The / keys scroll

through the list of previously entered

statements). Thus, in the command

prompt you will see the previously entered

expression. Just change the index of the

edge collection element from [0] to [1] and

set its bevel_weight to 1.0 (Figure

3.3.16).

When you execute this command, the

second edge of this cube will also become

beveled. So — it works!

Assign the active object (the test Cube) to

the helper cube variable

Try to “print” in the console the first element (#0) of its edges

Python prints in response the string representation of the
edge #0 from Cube mesh. Therefore, this expression works

as expected.

Make sure that the value of this field is the expected one

Figure 3.3.16 Verification of the bevel_weight influence on the mesh

Check, if you can bevel
another edge using simi-
lar Python expression

Chapter 3 Basic Python Script 55

Copyright Witold Jaworski, 2011.

Since we have found and verified the key Python statements, it's time to start writing our script. At the beginning,

add the import statement of bpy (Blender API module). Then add the main procedure header (Figure 3.3.17):

Figure 3.3.17 Beginning of the script: the import declaration and the main (bevel()) function header

In order to have proper code autocompletion, add the „type declaration” for two variables (Figure 3.3.18):

Figure 3.3.18 Forcing proper autocompletion for local variables with the “type declaration” statements

Add to the bevel() procedure a loop: for each selected edge (edge.select == True) tag bevel, setting its

edge.bevel_weight to 1.0 (Figure 3.3.19):

Figure 3.3.19 The main loop of the bevel() function

Add this import statement, first!

Do not worry about this “not used”
warning. It will disappear later on!

Begin a new procedure. Preferably -
from the declaration and a docstring
comment

Simple loop:
For each selected edge set its
Bevel Weight to 1.0

Add here two „type declarations” statements, to have
proper code autocompletion for these local variables.

Minor problem: it will not work for the mesh variable, because it
appears earlier as the function argument! I have not shown it here,
but I have to change the name of this argument from mesh to _mesh,
to have the mesh members autocompleted. I decided not to obscure
this illustration with such a trick.

Autocompletion at
work!

56 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

That is all! After finishing this procedure, do not forget to comment out the „type declaration” statements of its

local variables (see Figure 3.3.18). (Just comment out, do not to remove, because they still can be useful). At

the end of the module invoke the bevel() procedure for the active object (more precisely, for its mesh —

active_object.data: Figure 3.3.20). At this early stage of writing, we will not bother checking if the active object

has a mesh at all.

Figure 3.3.20 Invoking the main procedure (bevel()) and commenting out the „type declarations”

Notice that the active_object property of the bpy.context object has the red underline (in PyDev it means a

possible error). It is strange, because we have already checked in the Python Console that such expression is

valid. Well, it is a problem with another “hard coded” Blender structure: bpy.Context. Depending on the circum-

stances of the call, this object can provide different properties! I am not able to recreate such behavior using the

declaration from the predefinition file. Here you can find the full list of its variants and their fields. I had to re-

move the code that generates the declaration of this Blender API fragment from the pypredef_gen.py script,

because it did not work properly
1
. Ultimately, the declaration of the bpy.types.Context class in the bpy.pypredef

file contains only the fields that are common for all variants of this context structure. Unfortunately, the

active_object field is not among them (there are contexts in which this property is not available). Of course, you

can just edit the bpy.pypredef file, adding to the types.Context declaration fields that you are missing.

On the other hand — this is just a dynamically interpreted script, not a source code to compile. Despite this er-

ror, we will run it without any problem. When we convert this code to an add-on, we will obtain the active object

in a different way — from the context reference, passed as the argument to our methods. Then PyDev will not

report an error in this case (because it will not recognize the type of this object).

1
 The original script, written by Campbell Barton, used a kind of „hacker trick” here. It refers to the actual executable (Blender) as to a dy-

namically linked object (a *.dll in Windows, or shared object — *.so — in Unix/Linux) without the name. Then it reads directly from this code

object the definition of the context structures. Unfortunately, it seems that this method is not working properly in Windows, because my

adaptation attempts failed.

Do not forget to comment out these lines!

There is no active_object property in the
bpy.types.Context declaration! (Alas!)

Invoking the bevel() procedure for the active object

http://www.blender.org/documentation/250PythonDoc/contents.html

Chapter 3 Basic Python Script 57

Copyright Witold Jaworski, 2011.

Summary

 We have prepared in Blender a test environment for our script — bevel.blend file. Its screen layout contains

useful tools for the code verification: the Outliner editor and the Blender Python Console (page 48);

 It is convenient to place the test Blender file in the Eclipse project (page 48);

 To inspect Blender data, use the Outliner in Datablocks mode (page 49);

 To change the Blender data in the Outliner, do all the modifications in the Object Mode (page 51 - 52). In

current Blender version (2.5) the Outliner displays just a c o p y of the mesh data, in the Edit Mode. This

copy is created when you enter the Edit Mode (when the Outliner was already opened) or when you open

the Outliner. This copy is not updated, and its state may be inconsistent with the current state of the mesh.

All your changes made in the Outliner in the Edit Mode, are ignored. Blender developers ensure that this is

temporary situation. They will rewrite this fragment when the new implementation of the meshes (the

BMesh project) appears in the Blender 2.6 trunk;

 You can read the Python API name of a control that is displayed on any Blender screen from its tooltip

(page 53);

 To verify the Python API name of a collection, displayed in the Outliner, you have to look into the RNA of its

parent (page 53);

 Always check in the Python Console whether your Python expression works as you expect (page 54);

 The variants of the bpy.context object have more fields, than listed in its class declaration

(bpy.types.Context). This set depends on the Blender editor, in which the script was called (page 56);

58 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

3.4 Launching and debugging Blender scripts

In the previous section, we have written the first piece of the script that should work in Blender. You could launch

it in the “old good way”: loading this file into the Blender Text Editor and invoking the Run Script command. Only

that would be difficult to debug the script, this way. What's more, it brings some confusion about the source files.

(If you changed something in the Blender Text Editor, you would have to remember to save it back to disk).

I suggest another, more convenient solution. Open in the Blender Text Editor the Run.py file, which accompa-

nies this book (see page 39). I propose to place the Text Editor above the Python Console (Figure 3.4.1):

Figure 3.4.1 Adding the Run.py script to our Blender test file

Run.py is a “stub” script, containing just a few code lines. To adapt it for our project, update the values of its

SCRIPT and PYDEV_PATH constants (Figure 3.4.2):

Figure 3.4.2 Adaptation of the Run.py code to this project

Set trace to False if you

want to run your script
without the debugger

Assign to PYDEV_PATH the full path to
PyDev module — pysrc. It is a subdirectory of
one of PyDev folders, having suffix:
*.debug_<PyDev version>

Full path to
our script

Chapter 3 Basic Python Script 59

Copyright Witold Jaworski, 2011.

The SCRIPT constant should contain the full path to our script file, and the PYDEV_PATH — full path to the

PyDev directory that contains the pysrc subfolder. (This is a Python package with so called PyDev remote de-

bugger client — see pages 124 and 129 for more information).

Prepare a Blender model for this test. The code that we wrote has to bevel the selected edges of the mesh. So

far we have assumed that the object already has the Bevel modifier — so set it as in Figure 3.3.3 (page 49).

Mark on this test cube some edges, and then switch to the Object Mode (Figure 3.4.3):

Figure 3.4.3 Preparation of the test object — selecting the edges to bevel

Insert a breakpoint in the script where you want to start debugging. In our case, we will add it to the beginning of

the code (Figure 3.4.4):

Figure 3.4.4 Placing the breakpoint

Launch from Eclipse the process of the remote debugger server (more about that — page 124) (Figure 3.4.5):

Figure 3.4.5 Launching the debug server process

Insertion of a breakpoint at the beginning of the

code will facilitate the use of the debugger

Launch the process of
remote debugger server

Remote debugger server “is listening” on the port 5678

(Some firewalls may ask you to accept the communication
through this port)

Do all these operations in
the Debug perspective

60 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

When the debug server displays its message in the console, we will run our script (Figure 3.4.6):

Figure 3.4.6 Launching the Blender script for the debugger

After a few seconds, the Eclipse debugger window "comes to life". In the editor window, PyDev will open the

helper pydev_debug.py module, and the code execution will stop on one of its lines (Figure 3.4.7):

Figure 3.4.7 The first break of the execution — in the helper pydev_debug module

The pydev_debug.py is a small module, which I wrote to facilitate the tracking Python scripts in Blender. Notice,

that it is used in the Run.py template (see the code, shown on Figure 3.4.6). You can find the detailed descrip-

tion of its debug() function on page 129. In any case, the debugger will always stop at this point. Just use the

Resume (F8) command here to continue.

Press this
button

Debugger will always break
its execution on this line of
pydev_debug.py module

Press Resume, to continue to

the next break point, we have
placed in our script (see page
59)

Chapter 3 Basic Python Script 61

Copyright Witold Jaworski, 2011.

When you press the Resume button, the script will be executed up to the line with the first breakpoint. (If there

were no such points in the code, it would run to the end). In our case, it will stop at the beginning of the file

where we have placed our breakpoint (see page 59 and Figure 3.4.10):

Figure 3.4.8 The first breakpoint, encountered after the Resume command

Step Over (F6) the lines of the script main code until you reach the bevel() function call (Figure 3.4.9):

Figure 3.4.9 The next step — „enter” into the bevel() procedure

When the procedure call is highlighted, press the F5 (Step Into) to track details of its execution.

We have stopped in the mesh_bevel.py

module, at the breakpoint we have set
before.

Use Step Into (F5),

to enter inside this
procedure

Do not worry about this PyDev
“suggestion”(see page 56)

62 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Follow the loop iterations. Check that the code works as expected, i.e. it changes the bevel_weight field to 1.0

only for the selected (edge.select = True) edges (Figure 3.4.8):

Figure 3.4.10 Tracking the loop code in the bevel() function

To keep track of the edge fields, use the Expressions panel (Figure 3.4.11 — see also page 126):

Figure 3.4.11 Tracking the selected fields in the Expressions tab

When the procedure is over, press the Resume button to finish quickly this script (Figure 3.4.12):

Figure 3.4.12 The state of the environment after the last Resume command

OK, we are inside the
bevel() procedure

You can track the Bevel Weight of
the edge object in the Expressions
pane.

The remote debugger server is still
listening (ready for the next debug
session)

Of course, you can also change the
script in this editor window

The script has been terminated
(these buttons are grayed out)

Chapter 3 Basic Python Script 63

Copyright Witold Jaworski, 2011.

If there were an error in this code, the debugger would also terminate this script. Then you can use the code

editor from the Debug perspective for the correction of minor bugs.

Fortunately, our code has occurred to be free of errors, so far. Let's have a look at the test cube (Figure 3.4.13):

Figure 3.4.13 The result of our script — properly beveled edges

It has been chamfered along the selected edges. It seems that our script is working properly.

To debug again the modified script, just save it and press the Run Script button on the Blender TextEditor

header. As long as the PyDev debugger server process is "listening", it automatically breaks the script execution

in the pydev_debug.py module. You will find yourself back in the place shown in Figure 3.4.7 (page 60). Thus,

the best practice is to keep the debug server running all the time. (If you inadvertently press the Blender Run

Script button when PyDev debug server is not running, Blender will become locked. In this state, you can only

close it using the Windows Task Manager. So it is better to close the Blender test file first, before closing Eclipse

with its PyDev debugger).

I propose to minimize the Text Editor that contains the Run.py stub, as it is shown in Figure 3.4.13, and save

this test Blender environment. (Blender always opens its files with preserved screen layout). Once modified,

Run.py will not be changed in this project anymore. Just leave the access to its Run Script button, to launch

easily the mesh_bevel.py script after each modification made in Eclipse. This makes the debugging more con-

venient.

Selected edges have
been beveled

Minimize the Text Editor, containing the
Run.py file. You will not change it any-

more, in this project. The only thing that
you need is the Run Script button,
launching the specified script in the
PyDev debugger.

64 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Summary

 To run our script in the PyDev debugger, use the Run.py stub code. Place it in the Blender Text Editor.

Save this Blender file as the test environment for our script (page 58);

 Before the first run, modify the string constants in the Run.py code. Place there the path to your script (in

SCRIPT) and the path to the PyDev remote debugger client module (in PYDEV_PATH) (page 58);

 To start the first debug session, activate in Eclipse the PyDev Debug Server (page 59), then press the

Run Script button in Blender (page 60); To start every subsequent debug session just press the Run

Script button again;

 Do not press the Run Script button of the Run.py script when PyDev debug server is not running, because

it will lock Blender. In this state, you can only close it using the Windows task manager. Thus, once you

start the PyDev debug server, do not close it until you finish your session of work in Eclipse.

 The debugger always breaks the script execution at certain line of the helper pydev_debug.py module

(page 60). Therefore, it is a good idea to put at the beginning of our code a breakpoint (page 59). Once you

have it, you can quickly go to this line of your script using the Resume command (F8);

 To track changes of selected object properties, use the Expressions window (page 62);

Chapter 3 Basic Python Script 65

Copyright Witold Jaworski, 2011.

3.5 Using Blender commands (operators)

Since the "nucleus" of our script works properly, it is time to add to it the other operations. Let’s begin with

switching from the Edit Mode to the Object Mode. It should be invoked at the very beginning of the bevel() pro-

cedure. (To not surprise the user, on the end of this procedure we should switch it back to the Edit Mode).

How to do it with the Blender API? The case seems obvious: the context object (bpy.context) has the mode

field that contains the actual Blender mode. In the Object Mode it returns „OBJECT‟, in the Edit Mode —

„EDIT_MESH‟. I always check such things in the Blender Python Console (Figure 3.5.1):

Figure 3.5.1 An attempt to use the bpy.context.mode field to change the current Blender mode

So let's try to assign a new value to Context.mode — it should change the current Blender mode, right? Many

of the API fields work this way, but as you can see (Figure 3.5.1), not in this case! Context.mode is read only. It

only returns the current Blender state. We have to find the other way to do it in Python.

The whole Blender GUI uses exclusively the Python API. There must be a way to change the current mode in

Python. Do you have an idea, how to find it? The items from the Mode menu
1
 do not display any tooltips!

In such cases, use the Info area. You have seen its header all the time, because it plays the role of the main

Blender menu. Enlarge it, dragging this header down (Figure 3.5.2):

Figure 3.5.2 Checking in the Info area the Python API calls that correspond to the issued Blender commands

Now switch Blender from the Object Mode into Edit Mode. Do you see it? Above the Info header something has

appeared. It looks like a Python API call (Figure 3.5.2). This is the sought expression!

1
 I mean the menu button located on the 3D View editor header

It would be the simplest way to change the
Blender mode, but it is not possible!

…then switch to
the Edit Mode

Here you can see the Python code
of every Blender command that has
been invoked!

I have read the current value, first

Enlarge the Info area,
dragging its bottom border
down…

66 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Inside the Info area, Blender displays the Pythona code of every command that you have invoked from a menu

or a panel. It's a kind of the user activity log. You will also see in the Info warnings or errors from various Blender

components. Therefore, it is worth to look there, from time to time.

OK, but how can we switch back from the EditMode to the Object Mode? Let’s check in the Info…Yes, this is not

any mistake! To switch back, Blender uses the same method: bpy.ops.object.editmode_toggle()
1
.Now that we

know how to do this, let's modify the script accordingly (Figure 3.5.3):

import bpy

def bevel(mesh):

 """Bevels selected edges of the mesh

 Arguments:

 @mesh (Mesh): a Mesh object, with some edges selected

 It should be called when the mesh is in Edit Mode!

 """

 #mesh = bpy.types.Mesh

 #edge = bpy.types.MeshEdge

 bpy.ops.object.editmode_toggle() #switch into OBJECT mode

 for edge in mesh.edges:

 if edge.select:

 edge.bevel_weight = 1.0

 bpy.ops.object.editmode_toggle() #switch back into EDIT_MESH mode

Figure 3.5.3 First addition — temporary switching from the Edit Mode to the Object Mode (to set the bevel weights in the mesh)

All right, we have already mastered the Blender mode changes. Let’s learn from the invaluable Info window,

which Blender API method adds the Bevel modifier to an object (Figure 3.4.5):

Figure 3.5.4 Testing, which Blender API operator adds the Bevel modifier

It turns out that it is bpy.ops.object.modifier_add(). Just call this operator with the type argument = „BEVEL‟.

1
 It looks that the Object Mode is a kind of the base mode in this program. The Blender API contains in the various bpy.ops modules meth-

ods that allow toggling between the Object Mode and any other mode: object.posemode_toggle(), paint.vertex_paint_toggle(),

paint.weight_paint_toggle(), paint.texture_paint_toggle(), sculpt.sculptmode_toggle(). The reviewer pointed me, that there is also a

universal method: bpy.ops.object.mode_set(mode). You can use it with appropriate argument, instead of the *_toggle() operators.

Place all assumptions about using this
procedure in its docstring comment!

Switching into the Object Mode

Switching back to the Edit Mode

Expression that adds
the Bevel modifier

Chapter 3 Basic Python Script 67

Copyright Witold Jaworski, 2011.

Great! It is going well, so let's switch the modifier into the mode of operation which we need. The Info window

should show us corresponding Python expressions. So change in the Bevel modifier panel the Limit Metod to

the Weight, and the weight type — to the Largest. All right, we have set them, but… why there is nothing new, in

the Info window (Figure 3.5.5)?

Figure 3.5.5 Missing expressions in the Info area

It occurs that the Info area does not show everything. No Blender command (i.e. operator) was called, when you

clicked on the panel options. It just changed the values of two fields in the modifier object.

What were these fields? You have to read it from their tooltips (Figure 3.5.6):

Figure 3.5.6 Reading the corresponding Python API name

From the tooltip can be seen that all three values of the first row (None, Angle, Weight) reflect three possible

states of the BevelModifier.limit_method. The options from the second row (Average, Sharpest, Largest) cor-

respond to the three possible states of the BevelModifier.edge_weight_method (Figure 3.5.6).

 In Blender, the rows of alternate options often reflect the possible states of a single Python API field

We have changed these
options — and these expres-
sions have not appeared in
the Info area? Why?

Hold the mouse over this
option for a while...

… so Blender will display
its description and the
Python API name

68 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

All right. We already know the name of the fields that need to be changed, but how to reach the modifier object

through the data hierarchy? To find the answer to this question, review the data structure of our Cube object in

the Outliner (Figure 3.5.7):

Figure 3.5.7 Finding the modifiers collection

You will find this modifier in the Cube object itself. It is an element from the Object.modifiers
1
 collection. You

already know how to get the active object, so we have identified the whole „name path” to these modifier fields.

It remains to ascertain the Python values, which we have to give to these attributes. Their Blender API descrip-

tions are very laconic, sometimes simply enumerate the possible values without any comment. Therefore, I al-

ways prefer to check their values in the Python console (Figure 3.5.8):

Figure 3.5.8 Checking the values of modifier object fields (in the Python Console)

1
 This placement means that can you use the same mesh in different objects, and each of them can have different set of modifiers. One of

them can “smooth” it with the Subdivision Surface modifier, another — bend it along a curve. In the result, you can create, from a single

mesh, many objects of completely different shape. It is worth to remember about such things - they are sometimes useful to enhance our

work on a model!

Referencing the modifier

by its name („Bevel‟)

The modifiers
collection belongs
to the object, not
to the mesh!

Chapter 3 Basic Python Script 69

Copyright Witold Jaworski, 2011.

What operator corresponds to the Apply button on the modifier panel? You can also use the information from its

tooltip, here (Figure 3.5.9):

Figure 3.5.9 Comparing the information delivered by the Info window and the control tooltip

Yet when you perform this operation, you will see in the Info window the exact expression, with all the argument

values. It is very helpful. For example, in the Blender API documentation you can read about the apply_as ar-

gument following description: „How to apply the modifier to the geometry”. Guided by this hint, you

would not be able to discover that you have to set its value to „DATA‟!

We have all the information, so we can extend our procedure now (Figure 3.5.10):

import bpy

def bevel(obj):

 """Bevels selected edges of the mesh

 Arguments:

 @obj (Object): an object with a mesh.

 It should have some edges selected

 This function should be called in the Edit Mode, only!

 """

 #edge = bpy.types.MeshEdge

 #obj = bpy.types.Object

 #bevel = bpy.types.BevelModifier

 bpy.ops.object.editmode_toggle() #switch into OBJECT mode

 #adding the Bevel modifier

 bpy.ops.object.modifier_add(type = 'BEVEL')

 bevel = obj.modifiers[-1] #the new modifier is always added at the end

 bevel.limit_method = 'WEIGHT'

 bevel.edge_weight_method = 'LARGEST'

 for edge in obj.data.edges:

 if edge.select:

 edge.bevel_weight = 1.0

 bpy.ops.object.modifier_apply(apply_as = 'DATA', modifier = bevel.name)

 bpy.ops.object.editmode_toggle() #switch back into EDIT_MESH mode

bevel(bpy.context.active_object)

Figure 3.5.10 Script development: adding the Bevel modifier

Yes, you can learn from this tooltip the name
of the operator that corresponds to this Apply
button, but…

… in the Info area you can see it with
the argument values!

I have changed my mind about the type of the argument:
It is better to pass the whole Object, not just its Mesh! (The modifier is added to Object).

Add new Bevel modifier to the obj object. Set it
into appropriate mode

The new modifier is always appended to the end
of the modifiers collection

Now we are passing to this procedure
just the active_object

Applying the modifier.

We have changed type of this procedure input,
so this expression also has been updated

70 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

As you can see from my explanations (Figure 3.5.10), during implementation of the modifier handling I have

decided to change the type of the bevel() input data from Mesh to Object. (Because modifiers belong to the

object, not the mesh). Such changes always require some attention. You have to do simultaneous changes in

many different places of the code. If you will forget about any of them then you will have an error, later on.

The code in Figure 3.5.10 has a flaw. It was written „for the test data”. During the practical use, it may happen

that you will invoke it against an object that already contains other modifiers. For example — the Subsurf

smoothing (Figure 3.5.11);

Figure 3.5.11 The problem with the modifier position on the stack

The new modifier, as our Bevel, is always appended to the end of modifier list (stack). It has to be the first one,

to be applied to the mesh without any chance for an unwanted effect. Using the Info window you will quickly

find, that there is the bpy.ops.object.modifier_move_up() operator. We have to use this method in a loop,

moving our modifier up until it will become the first one (Figure 3.5.12):

import bpy

def bevel(obj, width):

 """Bevels selected edges of the mesh

 Arguments:

 @obj (Object): an object with a mesh.

 It should have some edges selected

 @width (float):width of the bevel

 This function should be called in the Edit Mode, only!

 """

 #edge = bpy.types.MeshEdge

 #obj = bpy.types.Object

 #bevel = bpy.types.BevelModifier

 bpy.ops.object.editmode_toggle() #switch into OBJECT mode

 #adding the Bevel modifier

 bpy.ops.object.modifier_add(type = 'BEVEL')

 bevel = obj.modifiers[-1] #the new modifier is always added at the end

 bevel.limit_method = 'WEIGHT'

 bevel.edge_weight_method = 'LARGEST'

 bevel.width = width

 #moving it up, to the first position on the modifier stack:

 while obj.modifiers[0] != bevel:

 bpy.ops.object.modifier_move_up(modifier = bevel.name)

 for edge in obj.data.edges:

 if edge.select:

 edge.bevel_weight = 1.0

 bpy.ops.object.modifier_apply(apply_as = 'DATA', modifier = bevel.name)

 bpy.ops.object.editmode_toggle() #switch back into EDIT_MESH mode

bevel(bpy.context.active_object, 0.1)

Figure 3.5.12 Script development: enhancements in the modifier handling

Only the first modifier on this stack can be applied to
the mesh with no chance for any distortion of all the
other modifiers

The new modifier is always added to the bottom of
this stack. We have to move our Bevel up!

I have added another argu-
ment: the bevel width

Setting the bevel width

The loop, which moves our
modifier to the top of the stack

The width for the tests

Chapter 3 Basic Python Script 71

Copyright Witold Jaworski, 2011.

On the end, I have added to the bevel() code second argument: the bevel width (see Figure 3.5.12). In the test

call to this procedure, it is set to 0.1 Blender units. Let us prepare the environment for testing, and we will be

ready for the next debug session (Figure 3.5.13):

Figure 3.5.13 Preparation for another test

Select some edges of the mesh and press the Run Script button. On the first run after major changes, always

follow the execution of your script in the debugger. Fortunately, it has finished without errors. Figure 3.5.14 dis-

plays its result:

Figure 3.5.14 The result of the script run

It looks as expected: the selected edges have been beveled. Yet it is worth to check the distribution of the Bevel

Weight values on these newly created edges (Figure 3.5.15):

Figure 3.5.15 The propagation of the Bevel Weight values on the newly created edges

Select edges to
bevel

Remove all modifiers
from this object

The selected
edges are
permanently
chamfered

Most of the selected
(i.e. newly created)
edges has Bevel
Weight = 1

All other edges have
Bevel Weight = 0

72 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

In the place of two originally selected edges the script has created some new ones (see Figure 3.5.14). All of

these newly created edges are selected, and most of them (but not all!) have a non-zero Bevel Weight. I have

not found any edge in this cube, which has Bevel Weight > 0 and is selected... So I assume that these new

edges "inherit" from the original ones their state, such as the selection and Bevel Weight. The latter can cause

unexpected results at the next Bevel operation. (It would modify not only the edges selected by the user, but

also the others, which inherited Bevel Weight in the previous operations). Therefore, our script should “clean up”

the mesh on the end of the bevel() procedure, clearing the bevel_weight values of the selected edges (Figure

3.5.16):

def bevel(obj, width):

 """Bevels selected edges of the mesh

 Arguments:

 @obj (Object): an object with a mesh.

 It should have some edges selected

 @width (float):width of the bevel

 This function should be called in the Edit Mode, only!

 """

 #edge = bpy.types.MeshEdge

 #obj = bpy.types.Object

 #bevel = bpy.types.BevelModifier

 bpy.ops.object.editmode_toggle() #switch into OBJECT mode

 #adding the Bevel modifier

 bpy.ops.object.modifier_add(type = 'BEVEL')

 bevel = obj.modifiers[-1] #the new modifier is always added at the end

 bevel.limit_method = 'WEIGHT'

 bevel.edge_weight_method = 'LARGEST'

 bevel.width = width

 #moving it up, to the first position on the modifier stack:

 while obj.modifiers[0] != bevel:

 bpy.ops.object.modifier_move_up(modifier = bevel.name)

 for edge in obj.data.edges:

 if edge.select:

 edge.bevel_weight = 1.0

 bpy.ops.object.modifier_apply(apply_as = 'DATA', modifier = bevel.name)

 #clean up after applying our modifier: remove bevel weights:

 for edge in obj.data.edges:

 if edge.select:

 edge.bevel_weight = 0.0

 bpy.ops.object.editmode_toggle() #switch back into EDIT_MESH mode

Figure 3.5.16 The ultimate version of the bevel() procedure

The bevel(object, width) procedure is ready. Notice that there is no input data validation, yet. We will

implement this part in the next chapter, where our script will become a Blender add-on.

Removing „inherited” bevel weights
from the newly created edges

Chapter 3 Basic Python Script 73

Copyright Witold Jaworski, 2011.

Summary

 You can trace the exact Python expressions that correspond to the Blender commands in the Info area

(page 66). Unfortunately, it shows the commands (operator) calls, only, You cannot trace there the changes

of the panel options (page 67);

 You can read from the last line of a control tooltip the corresponding name of the Python API field (property)

(page 67);

 It is a good practice to check in the Blender Python Console the values of a Python API field, before using it

in the code (page 68);

 To use a Blender command (the operator) within your script, simply call corresponding method from the

bpy.ops module. The basic technique is to combine these methods with the code that checks the state of

the Blender data after such change. For example, the moving of newly added modifier to the beginning of

the modifier stack is implemented in this way (page 70);

74 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Chapter 4. Converting the Script into Blender Add-On

Probably you know the Blender User Preferences window. I suppose that you already noticed the Add-Ons tab:

Every Blender add-on is a special Python script. This window allows you to compose the “working set” of

plugins (add-ons), which you actually need. During its initialization, an add-on can add new elements to the user

interface: buttons, menu commands, and panels. In fact, the whole Blender UI is written in Python, using the

same API methods that are available for the plugins.

In this chapter, I am showing how to convert our Blender script into a Blender plugin. This add-on will add to the

mesh Specials menu the “destructive” Bevel command.

Click here, to activate or
deactivate this plugin

Chapter 4 Converting the Script into Blender Add-On 75

Copyright Witold Jaworski, 2011.

4.1 Adaptation of the script structure

So far, our script has been "linear" - it executes what was written in the main code, from the beginning to the

end. The Blender plugins work differently, as you will see it in this section. Therefore their code must have a

specific structure.

Let’s begin with the plugin “nameplate”. Each Blender add-on must contain a global variable bl_info. It is a dic-

tionary of strictly defined keys: „name”, „autor”, „location”, etc. Blender uses this structure to display the in-

formation in the Add-Ons tab (Figure 4.1.1):

#--- ### Header

bl_info = {

 "name": "Bevel",

 "author": "Witold Jaworski",

 "version": (1, 0, 0),

 "blender": (2, 5, 7),

 "api": 36147,

 "location": "View3D>Edit Mode>Specials (W-key)",

 "category": "Mesh",

 "description": "Bevels selected edges",

 "warning": "Beta",

 "wiki_url": "",

 "tracker_url": ""

 }

Figure 4.1.1 The bl_info structure and its pane in the User Preferences window

You can leave some of these keys with empty strings — for example the documentation and bug tracker

addresses („wiki_url”, „tracker_url”). Be careful with the „category” value: use here only the names that are

visible on the category list (in the Add-Ons tab). If you use anything that is not there — your add-on will be

visible in the All category, only.

This plugin has to expose our bevel() method as a new Blender command. To make this possible, we have to

embed our procedure in a simple operator class (Figure 4.1.2):

#--- ### Operator

class Bevel(bpy.types.Operator):

 ''' Bevels selected edges of the mesh'''

 bl_idname = "mesh.bevel"

 bl_label = "Bevel"

 bl_description = "Bevels selected edges"

 def execute(self,context):

 bevel(context.active_object,0.1)

Figure 4.1.2 The operator class, “wrapped around” the bevel() procedure.

I gave this class the Bevel name (call it as you wish). This new operator must inherit from the abstract

bpy.types.Operator class. Otherwise, it will not work properly.

"tracker_url" "wiki_url" "warning"

"version"

"description"

"name"

"location

" "author

"

"category"

Here you determine the name of this operator for the
Blender API: bpy.ops.mesh.bevel(). Type this text in
the lower case!

GUI command name (for the menu, or a button)

Command description, displayed in the tooltip

Let’s assume a constant width: 0.1, for the test

"category"

76 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Each operator must have two class fields: bl_idname and bl_label (Figure 4.1.2). I also suggest setting anoth-

er: bl_description. (If it is missing, Blender displays in the command tooltip the docstring comment you have

placed below the class header). At the beginning, our class will have just one method, with a strictly specified

name and parameter list: execute(self, context). Place inside it the call to the bevel() procedure, with the fixed

bevel width (just for the tests). At this stage, I still do not add any input data (context) validation.

To register in Blender all such classes from your module, you must add to the script two special functions, re-

sponsible for this operation. This code usually looks the same: at the beginning import two helper functions from

the bpy.utils module. Use them at the end of the script, in two methods that must have names: register() and

unregister() (Figure 4.1.3):

#--- ### Imports

import bpy

from bpy.utils import register_module, unregister_module

#--- ### Register

def register():

 register_module(__name__)

def unregister():

 unregister_module(__name__)

#--- ### Main code

if __name__ == '__main__':

 register()

Figure 4.1.3 The code that registers in the Blender environment the API classes, defined in the script.

Let's check how does such modified script work. Make sure, that the PyDev debug server is active. Prepare a

test object in Blender, and then press the Run Script button (Figure 4.1.4):

Figure 4.1.4 Launching our add-on in the debugger.

…

Pozostały kod skryptu

…

A typical piece of the code, that registers and
unregisters all the classes that inherit from the
bpy.types.Operator, bpy.types.Panel, or
bpy.types.Menu abstract classes.

Import from bpy.utils these two
procedures

This code was added as a precaution (during the
add-on initialization, the name of actual module
— __name__ — is never = „__main__‟)

The mesh, prepared
for another test

Press the Run Script
button

Chapter 4 Converting the Script into Blender Add-On 77

Copyright Witold Jaworski, 2011.

What about the result? It seems that the execution of this script has passed without any error, but the selected

edges of the mesh are not chamfered? To make sure, add a breakpoint to the Bevel.execute() method, and run

this script again. Nothing happens, and this breakpoint is never reached (Figure 4.1.5):

Figure 4.1.5 The state of the script after the first Resume (F8) command

The point is that currently the main script code does not call the bevel() procedure. It just registers a new

Blender command (operator), under the name that you have assigned to the Bevel.bl_name field. In our case it

is just „mesh.bevel” (see page 75, Figure 4.1.2). Check in the Python console, whether the

bpy.ops.mesh.bevel method exists (Figure 4.1.6):

Figure 4.1.6 Checking results of the add-on registration

Now you can add this new operator to a Blender menu or a panel button. We will deal with the GUI integration

subject in the next section of this chapter. For now, just call this command “manually” — in the Python Console

(Figure 4.1.7):

Figure 4.1.7 Call the operator…

.. because the debug server has
empty stack!
(It still is active and ready to start
a new Blender debug session)

It seems that the script is finished…

… but the execute() method has
not been called!

Type the name of this operator
without the „()”…

… and Python will display its
declaration and docstring!

This time type the operator
name as the Python method —
with the „()” at the end

78 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

The Blender window has become locked, and the Eclipse the PyDev debugger is activated. It waits at the

breakpoint, we have placed inside the execute() method (Figure 4.1.8):

Figure 4.1.8 …and the debugger will stop its execution at your breakpoint

Do you see? We have simulated here what Blender will do with our operator. When you call the

bpy.ops.mesh.bevel() method (usually from a menu or a panel button), Blender will create a new instance of

the Bevel class. This Bevel object is used just to call its execute() method. After this call Blender releases (dis-

cards) the operator object. Such a “method of cooperation” („do not call us, we will call you”) is typical for the all

event-driven graphical environments.

By the way: notice the arguments of this procedure, exposed in the Variables pane. Expand the context param-

eter to see what kind of information can be obtained from this object (Figure 4.1.9):

Figure 4.1.9 Previewing the context of this call

The context structure may have different fields for different Blender windows. Examine it, because sometimes

you can discover something interesting. For example — what is the difference between the object and

edit_object fields? Unfortunately, you still can find nothing about them in the Blender API pages.

We can start tracking the
code from this point!

In this mode, the context contains
not only the reference to the
active_object, but also two other

fields — edit_object and object.

http://www.blender.org/documentation/250PythonDoc/contents.html

Chapter 4 Converting the Script into Blender Add-On 79

Copyright Witold Jaworski, 2011.

Let’s examine in the Variables pane the self object. Notice, that the Bevel class has different base classes,

here. It has also a different value in the bl_idname field (Figure 4.1.10):

Figure 4.1.10 The content of the operator class (self)

Calm down: it is normal. It seems that Blender guided by the first member of the bl_idname value

(„mesh.bevel”), has created for our operator a class named MESH_OT_bevel. (The „mesh.” prefix is replaced

in the class name with the „MESH_OT_” string. Maybe the rule is that Blender replaces every dot („.”) in the

operator symbol with „_OT_”?) If you are curious about this, examine the content of the bpy.types namespace

(typing dir(bpy.types) in the Python Console, for example). You will see plenty of undocumented classes, there!

Their names always contain „_OT_”, „_MT_”, or „_PT_”. They are the operators, menus and panels defined in

the internal Blender GUI scripts!

Figure 4.1.11 The stack of the operator called from the console

Our operator object has a
different bl_idname value,
and a different base class!

By the way: look at the current state of the Python

script stack (Figure 4.1.11). Compare it with the

stack that is shown in Figure 3.4.7 (page 60), or in

Figure 3.4.10 (page 62).

At the bottom of the stack, you can see the func-

tions of the Python Console (it seems that its large

part is also written in Python). Then there is a

single line from a „<blender console>” module.

This is the invocation of our operator, which we

have typed in the console. As you can see, it has

called a method from the ops.py Blender module,

which has created this instance of our Bevel class

and called its execute() method.

The Python Console functions

The line, typed in
the console

Call to
Bevel.execute()

80 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

When you finish the last step of the execute() function — the call to bevel() — the next Step Over (F6) will

bring you to the Blender ops.py module (Figure 4.1.12):

Figure 4.1.12 The line of Blender internal script, that has called the Bevel.execute() method

We are here specifically to show you the behavior of the PyDev debugger in case of the Python error. When it

occurs, the green highlight of the current line disappears (Figure 4.1.13):

Figure 4.1.13 The state of the debugger in the case of a script error

At the same time in the Blender System Console debugger prints a message about the script name and the line

number where the error has occurred. Despite this, the script is not completed, yet. In the Debug panel you still

can see the contents of the stack. In the Variables panel you can check the current status of the local and global

variables. Usually, careful examination of their contents will allow you to determine the cause of the problem.

One element is still missing among this information: the text of the error message! I confess that so far I have

not found the place in PyDev where it could be checked. When we do not know what is wrong, it is difficult to

find for the cause…

The green mark of the current de-
bugger line has disappeared!

In the Blender System Console PyDev debugger
displays the information about the line, but still
without the error description

… the script will not finish, yet: you
can check the state of the variables.

When you get an exception (a
runtime error) here …

Chapter 4 Converting the Script into Blender Add-On 81

Copyright Witold Jaworski, 2011.

In any case, if you want to end up broken script - use the Resume command (F8). Then you will see the error

message (Figure 4.1.14):

Figure 4.1.14 The full information about the runtime exception

Well, it's water over the dam. Now that we know what went wrong, we would like to examine the state of script

variables. Unfortunately, it is impossible at this moment, because the code execution already has been termi-

nated (see the stack shown in Figure 4.1.15). In practice, when an error occurs in the script for the first time, let

it terminate, to be able to see its full description. Using it, set a breakpoint on the line, at which it occurs. Then

run the script again to break its execution at this line. This time you will be able to analyze the script state, and

to come to the cause of the problem.

 When you invoke an operator from the Python Console, the eventual error information will appear below

your call, as in Figure 4.1.14. When you invoke it form a Blender GUI control — a menu or a button — it will

appear in the Blender System Console (see page 127, Figure 6.3.8).

In this particular case, such a complex analysis is not necessary. Blender has written clearly that it expects to

receive from a function the strictly defined value (it may mean the return value of the Bevel.execute() method).

Indeed, in a hurry while writing this code I have forgotten completely that the execute() function must return one

of the enumeration values, listed in this message. Usually it returns 'FINISHED'. Let's fix our script right away

(Figure 4.1.15):

Figure 4.1.15 A quick fix of the code — directly in the Debug perspective

The error message

The execute() function must

return a collection with at least
one strictly defined text value!

82 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Just save the modified script on the disk. Then press the Run Script button, to reload the add-on code in

Blender. Finally, invoke again this operator from the Python Console (Figure 4.1.16):

Figure 4.1.16 Another test of the fixed script

As you can see, after this correction our operator works properly. Now it can be added to the Specials menu

(see also page 34). I will show how to do it in the next section.

1. Press the Run Script

button to refresh our
add-on

2. Invoke this operator
again

Its result — without
errors, this time

Chapter 4 Converting the Script into Blender Add-On 83

Copyright Witold Jaworski, 2011.

Summary

 Each add-on must contain the bl_info structure (page 75). This is its „nameplate”, used by Blender to dis-

play the information in the User Preferences:Add-Ons tab;

 A procedure that changes something in the Blender data (like our bevel()) must be converted into the

Blender operator. It involves creation of a class that derives from bpy.types.Operator. Place the call to the

updating procedure inside the execute() method of this new class (page 75);

 Each add-on must implement the register() and unregister() script methods (page 76);

 The Run Script button reloads the current version of the add-on script, only. (It calls the unregister()

method for the old version, and the register() method of the new one — see pages 82, 129);

 When you run the add-on script, it will just register its presence in Blender (page 77). You still have to in-

voke its operator — for example, using the Python Console (pages 77 - 78). In response to this call, Blend-

er creates a new instance of the operator class, an invokes its execute() method;

 The information about the environment of this call — current selection, active object, etc. — is passed to

the execute() function in the context argument (page 78);

 In case of script runtime error (when a runtime exception has been thrown), PyDev debugger breaks the

execution (page 80). You can examine the state of the variables, at this moment. Unfortunately, I had never

found a place where you would have seen the error message. This text will be displayed in the console

when you let the script terminate (using the Resume command — page 81);

84 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

4.2 Adding the operator command to a Blender menu

Before we will add an operator to the menu, it is the final time to take care about the input data validation. To

work properly, the bevel () procedure requires two conditions:

1. the mesh is in the Edit Mode;

2. at least one of its edges is selected;

Let's begin the implementation of the first condition. In fact, we are going to add our operator to the mesh

Specials menu, which is only available in the Edit Mode. Yet you never know whether someone in the future will

add your operator to another menu or panel. Therefore the poll() method is always worth adding to your opera-

tor class (Figure 4.2.1):

#--- ### Operator

class Bevel(bpy.types.Operator):

 ''' Bevels selected edges of the mesh'''

 bl_idname = "mesh.bevel"

 bl_label = "Bevel"

 bl_description = "Bevels selected edges"

 #--- Blender interface methods

 @classmethod

 def poll(cls,context):

 return (context.mode == 'EDIT_MESH')

 def execute(self,context):

 bevel(context.active_object,0.1)

 return {'FINISHED'}

Figure 4.2.1 The basic „availability test” — implementation of the poll() function

Blender invokes this function to find out if "in the current situation" this command is available. The "current situa-

tion" is described by the context argument. It is an instance of the bpy.types.Context class (we have already

met this class — see pages 78, 56, 54). The poll() function may examine the context object and returns True,

when the operator is available. Otherwise, it returns False.

This is the place for „general” tests, such as the condition #1. In our implementation the poll() function returns

True when the mesh is in the Edit Mode. (This is the meaning of the „EDIT_MESH‟ mode value. If we were in

other edit mode — the armature, for example — the context.mode field would return a different value).

 Do not use in the poll() function any method that changes the Blender state (for example the current mode,

or the scene data). Any attempt to invoke it here will cause a script runtime error.

Notice the @classmethod expression before the header of the poll() function. (In the programmer’s jargon, it is

called a “decorator”). It declares that this is a class method — to run it, you do not need an object instance
1
.

 Always add the @classmethod “decorator” before the header of the poll() method! If you omit it, Blender

will never call this function.

By the way, have you noticed that the Blender API requires from your operator class to implement strictly de-

fined methods? It is a kind of a "contract" between your script and the Blender core system. You agree to pre-

pare a class with specific functions. Blender agrees to call them in the strictly defined circumstances.

1
 Probably it improves the performance of the Blender environment. The poll() methods are implemented by all GUI controls, and they are

called every time the Blender screen is refreshed. (The poll() functions of appropriate controls are called when the user do anything — pulls

down a menu, clicks a button, etc.). If poll() were an instance method, like execute(), Blender would every time create the instances of

control objects just to call their poll() methods, and then discard them immediately. I suppose that it would work more slowly, perhaps too

slowly. To call the class method you not need to create its instance (an object), and therefore this operation requires less CPU time.

Function returns True when we are in the Edit
Mode. Thus, the Bevel command will be avail-
able in this mode, only

You have to declare poll() as the class method
(not the typical instance method)

Blender uses the poll() function to check, if this
operator is available for the current context. When
it returns False — its control is grayed out

Chapter 4 Converting the Script into Blender Add-On 85

Copyright Witold Jaworski, 2011.

Such a list of contracted functions and properties is called "interface" in the object-oriented programming. To

help you a little in its implementation, Blender API delivers the base for your operator: the bpy.types.Operator
1

class. In the object-oriented programming jargon, Operator is the so-called "abstract class". It just provides the

default, empty implementations of all methods required by the operator interface. Our operator class (Bevel)

inherits this default content from its base (bpy.types.Operator). That’s why it is possible to implement (override,

in fact) in the Bevel just these Operator methods, which are specific for this derived class.

We will not check the condition #2 („at least one of the mesh edges is selected”) in the poll() method. It is too

specific. It would be a very strange command, available only when something was selected on the mesh! Half of

the users would have no luck to see it in this state, and concluded that this add-on does not work. It is better to

make the Bevel command available in the Specials menu all the time. If the user invokes it without marking any

mesh edge before, it will display an appropriate message. In this way, she/he will know how to use it next time.

We could add such “advanced validation” to the Operator.execute() method. However, in certain situations, this

method may be called repeatedly, for the same context and with different other input parameters. (You'll find this

in the next section). Therefore, it is not good place for such a check, and certainly not to display the messages

for the user. There is a better place, in another method of this interface: Operator: invoke() (Figure 4.2.2):

#--- ### Operator

class Bevel(bpy.types.Operator):

 ''' Bevels selected edges of the mesh'''

 bl_idname = "mesh.bevel"

 bl_label = "Bevel"

 bl_description = "Bevels selected edges"

 #--- Blender interface methods

 @classmethod

 def poll(cls,context):

 return (context.mode == 'EDIT_MESH')

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 selected = 0 #edge count

 for edge in context.object.data.edges:

 if edge.select:

 selected += 1

 if selected > 0:

 return self.execute(context)

 else:

 self.report(type = 'ERROR', message = "No edges selected")

 return {'CANCELLED'}

 def execute(self,context):

 bevel(context.object,0.1)

 return {'FINISHED'}

Figure 4.2.2 Additional validation of the input data — in the invoke() method

Blender expects that the invoke() function will return similar codes like the execute() method. Our

implementation of invoke() begins with the counting of the mesh selected edges. If there is none, it displays the

warning message and returns the 'CANCELLED' code. Otherwise, it calls the execute() method and returns its

result ('FINISHED').

1
 In addition to the Operator interface, the Blender API contains two other interfaces (abstract classes): Menu and Panel. Obviously, they

serve to implement the user interface controls. You can find all of them in the bpy.types module, as well as in the PyDev autocompletion

suggestions. I wish the descriptions of these interfaces in the Blender documentation were better. Many of the details, which I am describing

here, are based on the various examples and my own observations, only!

Counting the selected
edges of the mesh

I noticed, that Blender interface code uses
context.object instead of active_object. I will
adhere to this convention, as a precaution.

If nothing is selected
— let the user to
know about it!

Blender calls the invoke() method, when opera-
tor has been invoked from a menu or a button.

It may also call the execute() method, later

(when user will change an operator parameter
in the Tool Properties pane)

We will not use the event in our script. Howev-
er, it is useful for so-called “modal operators”.

86 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

The invoke() method receives, except the context argument, another object: event. This is the information

about the user interface “event” — mouse movement or keyboard key state change. It allows creating advanced

operators (see examples in the Operator class documentation). To check the event fields in PyDev debugger,

always use the Expressions window. Type there names of particular bpy.types.Event fields, for example

„event.type”, or „event.value”. Any attempt to expand the fields of the event object in the Variables pane gener-

ates a Windows fault and terminates the Blender process!

I would like to draw your attention for a moment on the loops in Python. Writing the code shown in Figure 4.2.2

(page 85), I have tried to implement the loop that counts the selected edges in the most readable way. It was a

piece of code in the „visual basic” programming style. Browsing the Python code examples on the Internet, you

might encounter the other, "single line" solutions for such an operation (Figure 4.2.3):

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 selected = list(filter(lambda e: e.select, context.object.data.edges))

 if len(selected) > 0:

 return self.execute(context)

 else:

 self.report(type = 'ERROR', message = "No edges selected")

 return {'CANCELLED'}

Figure 4.2.3 Alternative way to count the selected edges in the invoke() procedure

This is an expression in the special „python” (or maybe even the „lisp”) style. The filter() function returns so

called iterator, which is converted by the list() function into a collection (list). Then you can check in the condi-

tional expression the length of this list. In the filter() function I have used the unnamed, temporary lambda

function. This lambda receives from the filter a single argument (e) — the element of the input collection.

Lambda function returns the value of its last expression (here: the sole expression) — that is True, when the e

edge is selected. (The detailed description of the standard filter() function you can find in the Python documen-

tation). The code readability depends on the advancement of the reader. For the experienced Python program-

mer the filter() expression with lambda function is as much readable, as the loop shown in Figure 4.2.2.

All right, our enhanced operator is ready to use. Yet how to add it to the Blender Specials menu (Figure 4.2.4)?

Figure 4.2.4 The Specials menu (in the mesh Edit Mode)

selected — the

list of the selected
mesh edges

To open this menu in the Edit

Mode, press the W key

http://www.blender.org/documentation/blender_python_api_2_57_release/bpy.types.Operator.html

Chapter 4 Converting the Script into Blender Add-On 87

Copyright Witold Jaworski, 2011.

All Blender menus are created in the same way that is available for your add-on: using the Python API. You just

need to discover the name of the class that implements the Specials menu. Let's begin with finding the file that

should contain its code. Scripts that implement the entire Blender user interface can be found in

scripts\startup\bl_ui directory (Figure 4.2.5):

Figure 4.2.5 Searching for the file with the View 3D menu definitions

Files with names starting with properties_* contain various panel classes for the Properties editor. Omit them, at

this moment. There are also other files, which names have following structure: space_<editor name>.py. They

contain definitions of the menus and headers for each Blender editor. The Specials menu belongs to the View

3D editor, so we should look for it inside the space_view3d.py file.

Open this file in your favorite “add hoc” text editor (it can be just standard Notepad, or popular Notepad++ —

what you like). Search its content for the “human” name of this menu - the "Specials" text (Figure 4.2.6):

Figure 4.2.6 Searching for the “Specials” phrase in the space_view3d.py file

Look to this
folder

Files with the properties* prefix in the
name contain panels definitions (one file
per each tab: Textures, World, …)

Files with the space* prefix in the name
contain menu definitions (one file for
each editor: View 3D, UV/Image, …)

This is the file that we want. It defines
menus and headers of the View 3D
editor.

In your favorite “ad hoc” text editor (Windows

Notepad, or Notepad++, like here), press Ctrl - F

to open the Find dialog and search for the text of
the menu header

88 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Just remember that the same text may appear in many different menus! So is also in this case. First, I found the

menu class that implements Specials menu for the Object Mode (Figure 4.2.7):

Figure 4.2.7 One of the incorrect hits: similar menu for the other mode

How did I know it was not the menu that I was looking for? Although it had the proper header (the value of the

bl_label class field), it contained different items (the lines layout.operator(<operator name>, text = <display

name>)) than the menu shown in Figure 4.2.4!

After finding another definition of the Specials menu, I realized that part of their class name is the symbol of

Blender mode, in which they are used: „object”, „particle”… The third was the one I was looking for: „edit_mesh”

(Figure 4.2.8):

Figure 4.2.8 Class that implements the Specials menu for the Edit Mode

This is a Specials menu,
but for the Object Mode!

We were looking for this
Specials menu

What a surprise! The
original bevel operator
commented out. It has
the same name as ours!

Chapter 4 Converting the Script into Blender Add-On 89

Copyright Witold Jaworski, 2011.

When I know the menu class name, I can write the code that will add our operator to this menu (Figure 4.2.9):

def menu_draw(self, context):

 self.layout.operator_context = 'INVOKE_REGION_WIN'

 self.layout.operator(Bevel.bl_idname, "Bevel")

#--- ### Register

def register():

 register_module(__name__)

 bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_draw)

def unregister():

 bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_draw)

 unregister_module(__name__)

Figure 4.2.9 Adding the operator command to the Specials menu

The first tests of the modified register() and uregister() methods are successful (Figure 4.2.10):

Figure 4.2.10 Checking the menu update

Another test — an “empty” invocation without any selected edges — gives the expected result (Figure 4.2.11):

Figure 4.2.11 The result of invoking the Bevel command without any selected edges

This line forces Blender to use the
invoke() method of the operator,

instead of execute()

Adding and removing
the menu command

2. Press W

1. Press Run Script, to

load the new version of our
add-on

This is our operator,
prepended to the menu

There is no selected edge to
bevel — so our script displays
a warning

This is a helper function. Invokes the same expression that we have seen in the
menu class code (see Figure 4.2.8)

90 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

However, when I selected some edges of the mesh and invoked again the Bevel command — I saw the same

warning, again! (Figure 4.2.12):

Figure 4.2.12 The result of invoking the Bevel command with some edges selected

I chattered so much on pages 84—86 that I made a stupid mistake. I forgot about the thing, which I described

myself in the previous chapter (see pages 52, 53). Before you start counting the edges, switch Blender to the

Object Mode, and when it is done - back to the Edit Mode (Figure 4.2.13):

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 bpy.ops.object.editmode_toggle()

 selected = list(filter(lambda e: e.select, context.object.data.edges))

 bpy.ops.object.editmode_toggle()

 if len(selected) > 0:

 return self.execute(context)

 else:

 self.report(type='ERROR', message="No edges selected")

 return {'CANCELLED'}

Figure 4.2.13 Fix in the program: any reference to the mesh data must be performed in the Object Mode!

After this fix, invoke() finds the selected edges, and the command works properly (Figure 4.2.14):

Figure 4.2.14 Successful test of the fixed script

We have already achieved the effect similar to the Bevel command from Blender 2.49 (see page 34). Our Bevel

command lacks only the interactive ("dynamic") width changing. We will add this functionality in the next section.

 2. W

1. Select
edges

3.

It seems to be a bug
in our script!

Switch Blender into the Object Mode
to count these edges properly

Chapter 4 Converting the Script into Blender Add-On 91

Copyright Witold Jaworski, 2011.

Summary

 You can implement in your operator the optional poll() method. Blender uses this function to check, wheth-

er in the current context the command is still available (for example — active in the menu). It is intended for

the first, general tests, like the checking of the current mode (page 84);

 The further, more detailed verification of input data should be implemented in another method: invoke()

(page 85). Blender calls this method when user invokes your operator from a menu (or presses a button).

This is controlled by appropriate field of the bpy.types.Menu class (see page 89). The same applies to the

panels. (I have not described panels here — the custom controls that derive from the bpy.types.Panel

class);

 Add your operator to a Blender menu in the register() method, and remove in unregister() (page 89). To

write this fragment of code, we have to know the Python class name, that implements this particular Blend-

er menu;

 You can find the class name of a Blender menu in the Python script files that define the Blender user inter-

face (pages 87 - 88);

92 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

4.3 Implementation of dynamic interaction with the user

In Blender 2.5, it is very simple to implement a dynamic interaction between your operator code and the user —

its certain scheme, at least. It allows the user to change continuously the operator parameters (using mouse, for

example), while Blender is updating the result on the screen.

First, add to the operator class the width parameter (as a class field). Create it, using appropriate function form

the bpy.props module (Figure 4.3.1):

#--- ### Imports

import bpy

from bpy.utils import register_module, unregister_module

from bpy.props import FloatProperty

#--- ### Operator

class Bevel(bpy.types.Operator):

 ''' Bevels selected edges of the mesh'''

 bl_idname = "mesh.bevel"

 bl_label = "Bevel"

 bl_description = "Bevels selected edges"

 bl_options = {'REGISTER', 'UNDO'} #Set this options, if you want to update

 # parameters of this operator interactively

 # (in the Tools pane)

 #--- parameters

 width = FloatProperty(name="Width", description="Bevel width",

 subtype = 'DISTANCE', default = 0.1, min = 0.0,

 step = 1, precision = 2)

 #--- Blender interface methods

 @classmethod

 def poll(cls,context):

 return (context.mode == 'EDIT_MESH')

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 bpy.ops.object.editmode_toggle()

 selected = list(filter(lambda e: e.select, context.object.data.edges))

 bpy.ops.object.editmode_toggle()

 if len(selected) > 0:

 return self.execute(context)

 else:

 self.report(type='ERROR', message="No edges selected")

 return {'CANCELLED'}

 def execute(self,context):

 bevel(context.object,self.width)

 return {'FINISHED'}

Figure 4.3.1 Changes in the class definition

The field created in this way, Blender will display as a control on the screen. The bpy.props module contains

classes to define the parameters (attributes) of four basic types: Bool*, Float*, Int*, String*. Additionally, there

are also one-dimensional arrays (the *Vector* classes) of each of these types. The bevel width is a Float value,

in our script. That’s why I import from bpy.props just a single class — FloatProperty(). In its constructor, you

can set up all the properties of a GUI control: the label (name), tooltip description, default value, and the range.

The step parameter determines the value of increment/decrement, used when the user will click the arrows on

the control ends. The precision parameter determines the number of digits displayed in the control text area,

after the decimal dot.

Using the width
parameter value

Creation of the width
operator parameter

Import the class for the attribute
of Float type.

Currently, there is still no description of these op-
tions in the official Blender API documentation. This
combination I have copied from the code of Twisted
Torus add-on, or something like that.

…

The remaining code of the script

…

Chapter 4 Converting the Script into Blender Add-On 93

Copyright Witold Jaworski, 2011.

After adding the parameters (properties) to the operator class, you should add to it a field called bl_options.

(We have not used it, so far. It is an optional element of the operator interface). Assign to it a list of two values:

{„REGISTER‟, „UNDO‟} (Figure 4.3.1). You have to use exactly these values. If you assign it single value of

'REGISTER', or 'UNDO', you will not obtain the effect, which is shown in Figure 4.3.2:

Figure 4.3.2 Dynamic change of the bevel width

Invoke our command (SpecialsBevel). It bevels the selected mesh edges as previously — using the default

width. Now press the T key, to open the Tool shelf (on the left side of the screen). In the Tool properties area

you can see a panel having the same name, as our operator (Bevel). Such panel contains the controls with the

parameters of the last used command — in our case it is the bevel Width. When you change its value here —

Blender will update immediately the result on the screen. When you drag the mouse cursor (holding the LMB

down) over this control, the bevel width will change dynamically, like in Blender 2.49 (see page 34, Figure 3.1.2).

How does Blender get this effect from our srcript? To track down such interactive events, a simple printing of a

diagnostic text in the console is better suited than the debugger. Put for a moment apropriate print() statements

in both operator methods: invoke() and execute() (Figure 4.3.3):

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 print("in invoke()")

 bpy.ops.object.editmode_toggle()

 selected = list(filter(lambda e: e.select, context.object.data.edges))

 bpy.ops.object.editmode_toggle()

 if len(selected) > 0:

 return self.execute(context)

 else:

 self.report(type='ERROR', message="No edges selected")

 return {'CANCELLED'}

 def execute(self,context):

 print("in execute(), width = %1.2f" % self.width)

 bevel(context.object,self.width)

 return {'FINISHED'}

Figure 4.3.3 Adding the diagnostic messages (just for the test)

Drag the mouse cursor
over the Width control,

(holding the LMB down)…

Just after invoking
the Bevel command:

the default width
value

… and the bevel
width will change
dynamically!

Diagnostic messages
 (for the Blender System Console)

94 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Reload this new add-on version, and invoke again the SpecialsBevel command (Figure 4.3.4):

Figure 4.3.4 The state immediately after the SpecialsBevel command

Immediately after this invocation, two messages have appeared in the console (Figure 4.3.4). It seems that

Blender has called the invoke() method, which in turn (see Figure 4.3.1) has called execute() with the default

value of the width parameter.

Now let’s change the value of Bevel:Width field in the Tool Properties pane. I have pressed ten times the “arrow”

on its right side, increasing the bevel width from 0.1 to 0.2 (Figure 4.3.5):

Figure 4.3.5 The state after increasing the Width value to 0.2 (in 10 steps)

Do you see? It seems that every time I have changed the value of the control, Blender has called Undo

command, and then simply has invoked the operator again. It uses directly its execute() method, calling it with

the width parameter set to the current value read from the Width control.

I suppose that Blender every time just invokes the operator method: bpy.ops.mesh.bevel(width = <current

control value>). Since you added the width parameter to the Bevel class, its method received an optional

argument with the same name (Figure 4.3.6):

Figure 4.3.6 The named argument of the bpy.ops.mesh.bevel() method

I think that the roles of the invoke() and execute() procedures can be summarized as follows:

 The invoke() method is called when the operator is executed with the default parameters. The execute()

metod is called when operator is executed for a specific parameter values. (In the latter case they are

explicitly passed in the argument list of this call).

The choice of the operator methods called by the GUI can be controlled by certain flags (see page 89).

The SpecialsBevel command uses invoke(), which
calls execute(). They use default width (0.10)

Each change of the Width controls invokes the execute()
method, with appropriate width value.

This is our Bevel.width field (see page
92, and also page 77, Figure 4.1.6)

Chapter 4 Converting the Script into Blender Add-On 95

Copyright Witold Jaworski, 2011.

There is still one detail that has to be added to this add-on. Our operator should "remember" the last bevel

width. It will be used as the default value on the next use. This will greatly help the user.

How to implement it? Do not try to store anything in the Bevel object. It seems that Blender creates a new

instance of this class on each response to the Bevel command. That is why our operator object appears on

each call in its default state. The proper place to store such information between the subsequent calls is the

Blender data file. Most elements of the scene can be used as if they were Python dictionaries (Figure 4.3.7):

 context.object["our data"] = 1.0 #Store

 stored_data = context.object["our data"] #Retrieve

Figure 4.3.7 Simplest example of storing information in the Blender data file

Be careful on retrieving such values. Usually you can not be sure if your data was previously placed there. It is

better to read them using the standard get() method, which does not generate an exception when the desired

element is missing. Here's modification, which allows our script to use the last bevel width as the default value

on the next invocation (Figure 4.3.8):

#--- ### Operator

class Bevel(bpy.types.Operator):

 ''' Bevels selected edges of the mesh'''

 bl_idname = "mesh.bevel"

 bl_label = "Bevel"

 bl_description = "Bevels selected edges"

 bl_options = {'REGISTER', 'UNDO'} #Set this options, if you want to update

 # parameters of this operator interactively

 # (in the Tools pane)

 #--- parameters

 width = FloatProperty(name="Width", description="Bevel width",

 subtype = 'DISTANCE', default = 0.1, min = 0.0,

 step = 1, precision = 2)

 #--- other fields

 LAST_WIDTH_NAME = "mesh.bevel.last_width" #name of the custom scene property

 #--- Blender interface methods

 @classmethod

 def poll(cls,context):

 return (context.mode == 'EDIT_MESH')

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 bpy.ops.object.editmode_toggle()

 selected = list(filter(lambda e: e.select, context.object.data.edges))

 bpy.ops.object.editmode_toggle()

 if len(selected) > 0:

 last_width = context.scene.get(self.LAST_WIDTH_NAME,None)

 if last_width:

 self.width = last_width

 return self.execute(context)

 else:

 self.report(type='ERROR', message="No edges selected")

 return {'CANCELLED'}

 def execute(self,context):

 bevel(context.object,self.width)

 context.scene[self.LAST_WIDTH_NAME] = self.width

 return {'FINISHED'}

Figure 4.3.8 Implementation of storing the last used width

Just for the code clarity: the
name of the dictionary item

An attempt to read the
value (it may not exist, yet!)

Store the last used
bevel width

If the last bevel width was
stored: use it now!

96 Creating the Blender Add-On

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Notice the script stores the last used bevel width in the current scene (context.scene), not in the modified ob-

ject or its mesh (Figure 4.3.8). If it placed the width in the current object, then you would obtain different default

values for various objects. I think it would be very confusing for the user. Thus, I prefer to store one width for all

calls — and the best place to keep such single value is the current scene. Preserving the current values of the

operator parameters in the Blender data has also another advantage that they are permanently stored when the

user saves the file.

There is yet another problem with such data, which may occur later. The same dictionary keys may be used in

the same scene by two different add-ons. In the result, one of them will overwrite the parameters of the other

one, and probably first of these scripts will end up with an error. Therefore, you should use the most specific,

long dictionary key names.

The storing of the last used width value was the final touch to this add-on. It is impossible to show this new

functionality on the pictures, so I exceptionally skipped them (). Our mesh_bevel.py plugin is ready to use.

When you put this file among the other Blender plugins (in the scripts\addons directory), our Bevel will appear in

the User Properties window (Figure 4.3.9):

Figure 4.3.9 Our Bevel add-on, displayed in the Add-Ons tab

You still have to publish the description of this add-on in the wiki.blender.org, and to open a bug tracker for the

eventual error notifications
1
. However, it is no longer the subject of this book. The full code of the script, we have

written here, you will find on page 131.

1
 In the result of such user feedback, I added further modifications to this script. One of them is the dynamic adaptation of the bevel width.

The last used value, as implemented in this book, did not fit well for large differences in the size of subsequent objects. To resolve this

problem, I added to the invoke() procedure a code that estimates the object size. On this basis, the program decides whether to ignore the

last used bevel value or to use the dynamically calculated default width. Such updates are natural to the development of each program. I

think that the implementation of this additional functionality would complicate our script, obscuring the main ideas presented in this book.

If you want to analyze the full code of the current "real" version of this mesh_bevel.py add-on, you can get it from the

http://airplanes3d.net/scripts-253_p.xml page.

These buttons will appear, when you set
the „wiki_url” and „tracker_url” entries in
the bl_info add-on structure

http://airplanes3d.net/scripts-253_p.xml

Chapter 4 Converting the Script into Blender Add-On 97

Copyright Witold Jaworski, 2011.

Summary

 Create the operator parameters (properties) as a class fields, using appropriate function from the

bpy.props module (page 92). The fields, created in this way, become automatically the named arguments

of the operator method (from the bpy.ops namespace — see page 94);

 To make your command interactive, just add to its operator class following line: bl_options =

{„REGISTER‟,‟UNDO‟}. When you invoke it, you will see in the Tool Properties sidebar a panel with all

command parameters, presented as the GUI controls. You can change them there using the keyboard or

the mouse. The results of these changes are dynamically updated on the screen, in the View 3D editor

(page 94);

 Save the current parameter values in the current scene. You can use them as the defaults on the next in-

vocation of your command (page 95).

98 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Appendices

I have added to this book various optional materials. They can come in handy when you are not sure of some-

thing while reading the main text.

Chapter 5 Installation Details 99

Copyright Witold Jaworski, 2011.

Chapter 5. Installation Details

In this chapter, you will find the details of the Python, Eclipse and PyDev installation procedures. Study them just

in the case you stuck on some trifle.

100 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

5.1 Details of Python installation

The installation of the external Python interpreter has not changed for many years, so let me show it using the

version 2.5.2, for which I already have prepared the illustrations.

Enter on the project page: www.python.org (Figure 5.1.1):

Figure 5.1.1 Main page of the Python project

Go to the DOWNLOAD section (Figure 5.1.2):

Figure 5.1.2 The download page, with various Python versions

Go to the
DOWNLOAD

Download the same Python

version that is used in Blender

http://www.python.org/

Chapter 5 Installation Details 101

Copyright Witold Jaworski, 2011.

Select the same Python version, which is used in your Blender. (If you cannot find the one with identical version

— select the closest one).

Click in the selected link and choose the Run option (Figure 5.1.3):

Figure 5.1.3 Downloading the installation program from the Python portal

(If you do not like to run the programs from the Internet directly, you can save this file on your disk, first).

Make sure, that you have the full (i.e. Administrator) privileges to your computer, and run the installation pro-

gram. Go through the installer screens, just pressing the Next button (Figure 5.1.4):

Figure 5.1.4 Subsequent screens of the Python installer

Select the Run
option

102 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

At the end, the program will display such a screen (Figure 5.1.5):

Figure 5.1.5 The last screen of the Python installation

Press the Finish button, to finish this process.

Chapter 5 Installation Details 103

Copyright Witold Jaworski, 2011.

5.2 Details of the Eclipse and PyDev installation

 First, check if you have Java Runtime Environment (Java JRE) installed on your computer. In Windows you

should have a “Java” icon, in the Control Panel. If it is not there — download the latest version from the ja-

va.com site and install it on your machine
1
.

Let’s start by downloading Eclipse. Go to the http://www.eclipse.org/downloads page (Figure 5.2.1):

Figure 5.2.1 Selection of the Eclipse package

In fact, Eclipse is a kind of open programmers environment. It is just a framework, which can be adapted to work

with any programming languages by appropriate plugins. On the Eclipse Internet site you can find some popular

plugin packages for the most popular languages. There is no ready "Eclipse for Python" bundle among them, so

we will make it ourselves. Just download any of these packages (I have chosen the one that has the smallest

size). Since July 2011, it is Eclipse for Testers (87 MB), which uses the Eclipse version 3.7 („Indigo”). I wrote

this book using the earlier version: 3.6 („Helios”). In that version, the smallest package was Eclipse IDE for

C/C++ Developers (also 87 MB). Eclipse for Testers will install the PyDev plugin somewhat longer, but later its

eclipse.exe will open the whole environment a little bit faster.

All the Eclipse packages are just plain *.zip files. Save the downloaded one somewhere on your disk. (To write

this book, I have downloaded file named eclipse-cpp-helios-SR2-win32.zip).

1
 Some Linux distributions, like popular Ubuntu, have GCJ as their default Java virtual machine (VM). In this environment, Eclipse runs

much slower than on the JVM from the www.java.com. What ’s more, even after the JVM installation on Ubuntu, it is not set as the default

VM! You have to correct it manually. More about this — see https://help.ubuntu.com/community/EclipseIDE.

Choose a package that
has the smallest size!

http://java.com/pl/download
http://java.com/pl/download
http://www.eclipse.org/downloads
http://www.java.com/
https://help.ubuntu.com/community/EclipseIDE

104 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

The downloaded file contains the eclipse folder, with the program ready to run (Figure 5.2.2):

Figure 5.2.2 Unpacking the program folder

Just extract it to the Program Files folder. (Yes! There is no installer, which would do some unclear settings in

your precious system! Eclipse has no external dependencies except the Java Virtual Machine, and does not

change anything in the Windows registry. Thus, you can simultaneously use many alternate Eclipse versions,

without any conflict).

To launch Eclipse, just run the eclipse.exe program (Figure 5.2.3):

Figure 5.2.3 Launching Eclipse

You can insert a shortcut to this file in your favorite menu or place it on your desktop.

Move this folder from the
*.zip file to Program Files

This program runs
Eclipse

Chapter 5 Installation Details 105

Copyright Witold Jaworski, 2011.

When you launch eclipse.exe program, it always displays a dialog box where you can select the location of the

Eclipse projects directory (it is called “workspace”). You may just confirm this default (Figure 5.2.4):

Figure 5.2.4 Selecting the current workspace

Each of Eclipse projects is a separate folder, containing a few configuration files, and the files with your code. (If

your script is located elsewhere on the disk, you can put in the project just its shortcut). Notice that the default

Eclipse workspace folder is located in the root directory of the user profile. (In this example, the username is

W4979721). This is not My Documents folder — just one level up. (It is the Unix/Linux convention of the home

directory). If you keep all your data in the My Documents folder — change the path displayed in this window.

Eclipse will create the appropriate directory, if it does not exist.

Eclipse is always trying to open in the workspace the recently used project. On the first launch it is impossible,

because the workspace folder is empty. Therefore, the version 3.6 displays following warning (Figure 5.2.5):

Figure 5.2.5 The warning, displayed on the first launch of an Eclipse workspace

They have fixed it in the version 3.7. In any case, there is nothing to worry about.

User’s home directory. (Notice, that it
is not the My Documents folder!)

If you are not going to work on more than one

project in the same time, you may check this option

106 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

When there is no active project, in the current workspace, Eclipse displays the Welcome pane. (Figure 5.2.6):

Figure 5.2.6 Eclipse window on the first launch

 The best way to install the PyDev plugin is to use

Eclipse internal plugin management facilites. Invoke

the HelpInstall New Software command (Figure

5.2.7).

(The location of this command in the Help menu may

be a little surprise for regular Windows users . They

rather would expect it in the Edit or the File menu. It is

just specific for Eclipse.)

Figure 5.2.7 Installation of an Eclipse plugin

Chapter 5 Installation Details 107

Copyright Witold Jaworski, 2011.

In the Install dialog, type the address of the PyDev project automatic updates page: http://pydev.org/updates

(Figure 5.2.8):

Figure 5.2.8 Adding to the software vendors list the PyDev entry

Then press the Add button. It opens the Add Repository dialog box. When you confirm it, Eclipse will read the

components, exposed on this page (Figure 5.2.9):

Figure 5.2.9 Selection of the PyDev plugin from its project site

Select on the list the PyDev component and press the Next button.

Type here the PyDev
project address…

… and press
this button!

Here you can give this
source a more “elegant”
name, instead of the url.

Select the PyDev component
and press the Next button.

http://pydev.org/updates

108 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Eclipse will display an additional list containing the details of installed components (Figure 5.2.10):

Figure 5.2.10 Confirmation of the installation details

After pressing another Next button, Eclipse will display the PyDev license agreement, for your acceptance

(Figure 5.2.11):

Figure 5.2.11 Acceptance of the PyDev license agreement

When you press the Finish button, it will launch the installation process.

Here you can see
the actual version
of this plugin…

Chapter 5 Installation Details 109

Copyright Witold Jaworski, 2011.

During the installation, Eclipse downloads from the Internet the appropriate components. It shows the standard

progress dialog (Figure 5.2.12):

Figure 5.2.12 The progress of the installation

Once the download is complete, Eclipse will ask you for the confirmation of the plugin certificate, in the next

window (Figure 5.2.13):

Figure 5.2.13 PyDev certificate confirmation

After confirmation of the certificate the last window will appear, finishing the installation process. (Figure 5.2.14):

Figure 5.2.14 Final window of the PyDev plugin installation

I think it is always worth to agree on the proposed restart of the Eclipse.

In the future, you can see here the name of
Appcelerator instead of Aptana. (Appcelerator bought
Aptana in 2011). If you are in doubt, check the current
information about PyDev in Wikipedia.

110 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

5.3 Details of the PyDev configuration

Once installed, you have to configure the default PyDev Python interpreter. This information is stored in the

current Eclipse workspace (ref. page 11, Figure 1.2.4). To set it, use the WindowPreferences command

(Figure 5.3.1):

Figure 5.3.1 Opening the current workspace configuration

In the Preferences window expand the PyDev section and highlight Interpreter - Python (Figure 5.3.2):

Figure 5.3.2 Automatic configuration of the Python interpreter

Then press the Auto Config button. If the path to your external Python interpreter is added to the PATH system

variable, PyDev will find it. (In this case, the configuration wizard will open the window shown in Figure 5.3.5).

It will also find alternative interpreters, if they are installed in their default directories. In such a case, PyDev will

display their list, asking you to select one.

Highlight this
element….

… and press
this button

Chapter 5 Installation Details 111

Copyright Witold Jaworski, 2011.

However, if the program could not find Python - it displays a message (Figure 5.3.3):

Figure 5.3.3 PyDev warning, when it cannot find the Python interpreter

In such a case, in the Properties window press the New button (see Figure 5.3.2). It will open the window of

„manual” Python selection (Figure 5.3.4):

Figure 5.3.4 “Manual” Python configuration

If you do not make any mistake in the path, then after pressing the OK button PyDev will display another win-

dow with some Python directories. The selected ones will be added to the PYTHONPATH configuration variable

(Figure 5.3.5). Just accept it without any changes:

Figure 5.3.5 Selection of the directories that will be added to the PYTHONPATH system variable

This is the “human” name of this interpreter,
which will be used in PyDev

The full path to the python.exe
executable file

112 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

In the result, the configured Python interpreter appears in the Preferences window (Figure 5.3.6):

Figure 5.3.6 Configured Python interpreter

When you accept this, pressing the OK button, PyDev will browse all the Python files that are present in the

PYTHONPATH directories. It will prepare the autocompletion data and the other internal stuff (Figure 5.3.7):

Figure 5.3.7 Processing the PYTHONPATH files

 Beware: During the installation of PyDev version 2.2.1 (more precisely: 2.2.1.2011071313) in the Eclipse

3.7 („Indigo”) Eclipse for Testers package, I saw an error message of Java runtime exception, in one of the

running programs. It had appeared on this last stage of the Python interpreter configuration. Nevertheless,

the Python files were still processed (underneath the window with this message), and this processing was

finished within a few seconds. This error did not cause any noticeable irregularities in the operation of the

Eclipse + PyDev environment.

During the earlier installations — PyDev version 2.1.0 (2.1.0.2011052613) in the Eclipse 3.6 („Helios”) Eclipse

for C/C++ Developers package, there were no such errors.

Configured Python
interpreter

Press the OK button, to
confirm these settings

Chapter 6 Others 113

Copyright Witold Jaworski, 2011.

Chapter 6. Others

In this chapter, you will find all the other additional materials of this book. (It is kind of the final "hodgepodge". It

would be too difficult to divide this information into a well-organized structure).

114 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

6.1 Updating the Blender API predefinition files

The Blender Python API changes a little in each Blender release. In the doc folder (see page 39) you will find

the shortcut, that will update your PyDev predefinition files for this latest version (Figure 6.1.1):

Figure 6.1.1 Contents of the doc folder

This Windows batch file calls the pypredef_gen.py script, from doc\python_api directory (Figure 6.1.2):

Figure 6.1.2 Contents of the doc\python_api folder

Theoretically pypredef_gen.py should run properly also in other operating systems, like Linux. I have not tried it.

This script is a reworked version of the sphinx_doc_gen.py, developed by Campbell Barton for automatic gen-

eration of the Blender API documentation. (The same, which is published on the blender.org pages). Thanks to

this code, descriptions of all functions and methods in the PyDev predefinition files are the same as in the offi-

cial API documentation. Just like there, they contain even the descriptions of each procedure parameter. The

only module that is not documented this way is bge. In addition, the bpy.context has some gaps, because it

has the variable structure that depends on the kind of the current Blender editor (View 3D, Python Console, etc).

The result of the pypredef_gen.py script — the *.pypredef files for the corresponding Python API modules — are

placed in the doc\python_api\pypredef folder (Figure 6.1.3):

Figure 6.1.3 Contents of the doc\python_api\pypredef folder

This folder should be referenced in the PyDev project configuration as the external library (see page 40).

This shortcut will update your *.pypredef
files to the latest Blender version

Script that creates or updates the
*.pypredef files

PyDev predefinition files for the
Blender Python API modules

http://www.blender.org/documentation/250PythonDoc/contents.html

Chapter 6 Others 115

Copyright Witold Jaworski, 2011.

When you upload a new Blender version (or move the doc folder into the directory with another Blender release)

run the doc\refresh_python_api.bat shortcut (Figure 6.1.4):

Figure 6.1.4 Updating of the Blender API predefinition files

That is all. Just remember to add the doc\python_api\pypredef path to the configuration of each PyDev project.

To do it, go to the project properties (Figure 6.1.5):

Figure 6.1.5 Opening the project properties

In the Properties window select the PyDev – PYTHONPATH section, and then, on the right pane — the

External Libraries tab (Figure 6.1.6):

Figure 6.1.6 Opening the PyDev - PYTHONPATH pane

The file updated during this
run

These messages always
appear - just ignore them

1. Highlight the
project folder

2. Go to its
properties

1. Select
this item

2. Open
this tab

116 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Initially, the project does not have any external libraries (the list in this tab is empty). Press the Add source

folder button, and add the doc\python_api\pypredef directory (Figure 6.1.7):

Figure 6.1.7 Adding the PyDev predefinition files folder as an “external library”

When the folder with Blender API files is already on the list, press the Force restore internal info button. From

the description in the window, it seems that you have to do it after each change in this list (Figure 6.1.8):

Figure 6.1.8 Forcing the refreshing of the project internal data

Initially, there are no
external libraries

Use this button to
add a new one

Press this
button

Chapter 6 Others 117

Copyright Witold Jaworski, 2011.

When you have approved the changes in the project configuration, add to the beginning of the script the „import

bpy” statement. It suggests PyDev that it should use the declarations from the bpy (Blender API) module. Then,

at the time of writing the code, just type a dot after the name of the object. PyDev will display the list of its meth-

ods and fields (Figure 6.1.9):

Figure 6.1.9 Code autocompletion — after typing a dot

More about the PyDev autocompletion functions you can find on page 41 and the next.

 Beware: On the official PyDev page (pydev.org) you can find different description how to use the predefini-

tion (*.pypredef) files
1
. The problem is that the addition to the Predefined section, described there, did not

work on my computer. Thus, I introduced here the proven and effective, although somewhat "unorthodox",

method.

Moreover I believe, that assigning such a Blender API reference to the particular project, not the whole work-

space, is better. You can write in parallel yet another project in the external Python. In such a project, the hints

on the Blender API would only disturb the user.

1
 It is described in this article: http://pydev.org/manual_101_interpreter.html

Add this statement, first!
Nothing will work without it!

Then write the code as usual — after
typing a dot, you will see the member
list of the appropriate class

http://www.pydev.org/
http://pydev.org/manual_101_interpreter.html

118 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

6.2 Importing an existing file to the PyDev project

You can add to the PyDev project the files that have already existed on your disk. Pull down the context menu

from the folder, where you want to have them, and invoke the Import… command (Figure 6.2.1):

Figure 6.2.1 Importing an existing file to the project folder

It opens the Import wizard window. On the first pane, select the GeneralFile System item as the source

(Figure 6.2.2):

Figure 6.2.2 Selecting the import source

Select this source

1. Highlight the target folder
and open its context menu

2. Invoke this command

Chapter 6 Others 119

Copyright Witold Jaworski, 2011.

On the next pane, select the folder that contains the file/files to import (Figure 6.2.3):

Figure 6.2.3 Empty import wizard pane

To select an existing source folder, or to create a new target one, use the Browse… buttons (Figure 6.2.4):

Figure 6.2.4 Selection of the folder

Click here, to select the
source folder

This form is not filled, yet. That’s
why the Finish button is grayed out

This is the target folder (one
of the project directories)

Select the
source folder

120 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

When the source directory is selected, you will see its content in the right pane (Figure 6.2.5):

Figure 6.2.5 Displaying the source folder content

Select at least one file to import (Figure 6.2.6):

Figure 6.2.6 Selection of the imported file

When you do this, the wizard will conclude that it has all the data, now. It will activate the Finish button. Press it,

to copy the selected files to the target project folder.

Yet, we have not
selected any file ...

When you select a file — the
error message will disappear

… and the Finish button
will become active

Content of the
selected folder

Chapter 6 Others 121

Copyright Witold Jaworski, 2011.

You can import to your PyDev project various files, for example — the Blender file with the testing environment.

Just double click, to open it (Figure 6.2.7). In this way, you have everything "in one place":

Figure 6.2.7 Opening the script “testbed”

 PyDev creates in the project folder copies of the imported files. This means that changes you will make to

them will not affect their originals.

However, it is also possible to link to the project a file, which is located somewhere in another directory. That can

happen when you want to work directly on an existing Blender add-on. They are placed in the Blender

scripts\addons subfolder. To link it, start the Import operation in the same way as before (Figure 6.2.8):

Figure 6.2.8 Linking an existing file — start with the Import command…

Just double click, to open this
Blender file

122 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

In the Import wizard window select the source folder and the file, you want to link (Figure 6.2.9):

Figure 6.2.9 Linking another add-on script to the project

Then press the Advanced>> button, to display the additional wizard options (Figure 6.2.10):

Figure 6.2.10 Selection of the linking options

Check the Create links in workspace option, first. This makes PyDev not create a local copy of the file in the

project folder. Instead, it will create there a reference to the original script. This way you can easily change or

reuse the code of plugins, located in the Blender directory.

PyDev also allows you to specify whether to store in the reference the full path to the specified file, or a relative

path. It is controlled by the Create a link is relative locations option. I always use relative paths, because it is

easier to move the project into another location with such a setting. PyDev can also determine the place in the

directory structure, which will be the "reference point" of such a relative path. For the Blender plugins I would

propose to use the ECLIPSE_HOME option. (Most likely, you have both Blender and Eclipse in the same

Program Files directory).

…then press this button….

The "reference point" of the
relative path to the linked file

Select the script you
want to link…

The Blender add-ons
directory

… Mark this
checkbox

Chapter 6 Others 123

Copyright Witold Jaworski, 2011.

When you press the Finish button, the PyDev will add the link to our project (Figure 6.2.11):

Figure 6.2.11 The source file, linked to this project

As you can see, the linked files are marked in Eclipse by an additional arrow in the lower right corner of their

icon. When you look at the properties of this shortcut, you can read or change the position of the referenced file

(Figure 6.2.12):

Figure 6.2.12 Properties of the linked file

This is the shortcut to a file that is
located elsewhere on the disk

The referenced file

Use this button, to change the
path to the referenced file

124 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

6.3 Details of the Blender scripts debugging

Blender executes scripts using its own, embedded Python interpreter. You can debug them using the built-in,

standard Python debugger. Unfortunately, this tool works in the "conversational" mode, in the console. Thus, it is

not the "user friendly" solution.

You need so-called remote debugger, to follow the script execution in an IDE such as Eclipse. This solution was

originally invented to keep track of the programs that are running on another computer (Figure 6.3.1):

Figure 6.3.1 Tracing the Blender script execution: the use of the PyDev remote debugger

In the IDE (like Eclipse) you have to run the server process that starts "listening" to eventual requests from the

debugged scripts. These requests will be sent from a remote debugger client, included in the code of the

tracked script. In our case, this debugger client code is in the pydevd Python package. It is imported and initial-

ized in the pydev_debug.py helper module (see page 129), which is used in the Run.py script template. (This is

the code, which runs our script — see page 58). The communication between the remote debugger client and

its server is realized through the network. Long ago, someone noticed that there are no obstacles to run these

two processes on the same machine. They exchange data using the local network card of the computer. Con-

ceptually, this corresponds to a situation, when two persons are sitting in the same room and talking to each

other via the phone. Fortunately, the programs are "stupid" and do not complain that they have to communicate

in such a circuitous way. This solution works correctly, and it only counts.

Use the PyDevStart Debug Server command, to start the server of its remote debugger (Figure 6.3.2):

Figure 6.3.2 The commands that control the server of the PyDev remote debugger

The Server: Eclipse

The Client: Blender

TCP/IP

The pydev_debug.py module

 .

 .

 import pydevd

 if trace: pydevd.settrace()

… it will start
the debug
client process!

Once run, the
server is listening
all the time

Press this to run
the debug server

When you run the
Run.py script…

Use this command to
terminate the debug
Server process

Use this command to
start the debug Server
process

You can use also these buttons. Do
not confuse the server activation
with the standard debug button!

Chapter 6 Others 125

Copyright Witold Jaworski, 2011.

What to do, when these PyDev commands do not appear
1
 on the toolbar nor menu, as in Figure 6.3.2?

Figure 6.3.3 Opening the Customize Perspective window

Figure 6.3.4 Enabling the PyDev remote debugger controls

When I made the Eclipse/PyDev installation for this book, the Start / End Debug Server commands were in the

proper place. I did not have anything to fix in the configuration of the Debug perspective. I suppose that such a

problem may be related to the way in which this perspective was added to the project.

 By the way, you have learned how to customize the project perspective .

1
 When I installed PyDev for the first time, such a thing just happened in my Eclipse. I spent whole day browsing through all the PyDev

documentation and the user posts from various Internet forums. In parallel, I continually searched various Eclipse menus, looking for these

two missing commands. In the end, I found them. To save you from similar troubles, I am describing here the solution.

This command group
must be enabled

Sometimes the Start/End Debug Server com-

mands can be just turned off in the Debug per-

spective! To enable them, use the

WindowCustomize Perspective command

(Figure 6.3.3).

In the Customize Perspective window, open

the Command Groups Availability tab (Figure

6.3.4). Find on the Available command groups

list (on the left) a command group named PyDev

Debug. Just enable it, to let the Start Debug

Server and End Debug Server commands ap-

pear on the toolbar and the menu!

126 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

While debugging the script, you will frequently check the current state of its variables. The PyDev provides the

Variables pane for this purpose (Figure 6.3.5):

Figure 6.3.5 The Variables panel

The panel is divided into the list with names and values of global and local variables, and the detail area. In the

detail area PyDev shows the value of the variable, which is highlighted on the list. I think that detail area is use-

ful for checking longer string values. When the value of a variable is an object reference, Eclipse displays the [+]

or [-] icon next to it. Click this icon to inspect the fields of this object.

In the Variables window you can also change the current variable values. Usually you will simply type them in

the Value column (Figure 6.3.5). You can also change them in the detail area (using the Assign Value com-

mand from its context menu).

The Expressions panel is more convenient for tracking the value of a single object field. You can add it to the

current perspective using the WindowShow ViewExpressions command (Figure 6.3.6):

Figure 6.3.6 Adding the Expressions panel

Here you can
alter the variable
value

In this window, you can also
change the variable value - using
this command

A window showing the value
of the highlighted variable

The variables that just
have changed values are
marked in yellow

Chapter 6 Others 127

Copyright Witold Jaworski, 2011.

The Expressions pane layout is similar to the layout of the Variables pane: it contains the list of the expressions

and their current values. There is also the detail area, showing in an larger field the value of highlighted list item.

Unlike in the Variables pane, here you can evaluate any Python expression, at every step of the script execution

(Figure 6.3.7):

Figure 6.3.7 Adding new items to the Expressions list

In the Expressions pane you can simply enter the variable name. More often, however, it is used to track the

selected fields of an object. You can also enter here a reference to a specific list item (eg, selected [0]). In con-

trast to the Variables window, here you cannot change the expression result (the content of the Value column is

read-only).

Figure 6.3.8 The Blender System Console

In Blender 2.57b this console
was turned off by default!

You have to toggle its visibility
manually, each time you open
Blender. (This setting is not
preserved in the Blender file)

…to see result of its
evaluation, here or
on the list

Type the expression
here…

Another useful element for the script debug-

ging is the Blender System Console. This is

additional text window, beside the main win-

dow of the program. When you start Blender,

the console appears first for a moment, and

then the main window. Using the

HelpToggle System Console command

you can control its visibility (Figure 6.3.8).

Blender System Console is the standard

output of all scripts. (Do not confuse it with the

Blender Python Console! There you see only

the results of manually typed commands).

In the System Console you see all the texts

printed by scripts (i.e. the results of the calls to

the standard print() function). When an error

occurs during the script execution, here you

will find its detailed description.

This is a message from the PyDev remote de-
bugger client (see also page 28, Figure 2.3.3)

128 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

While debugging a script (i.e. when you trace its code in the Eclipse) Blender is "locked". In fact, it is patiently

waiting for completion of the operation that you have started by pressing the Run Script button.

Still, if you enter an expression in the Server Debug Console in Eclipse, the Blender Python interpreter will eval-

uate it, and its result will be displayed in the Blender System Console. (Figure 6.3.9):

Figure 6.3.9 “Cooperation” of the Eclipse and Blender consoles during the debug session

You can treat it as an „ad hoc" method to check the values of various expressions - for example, a field of an

object (Figure 6.3.10):

Figure 6.3.10 “Cooperation” of the Eclipse and Blender consoles — other examples

Of course, the same can be checked in the Expressions panel. On the other hand, in the server console you

can more — for example, you can call a method of an object.

Enter a Python
expression…

… and here is the
result!

Type the field
name here…

… and here is its
value!

Type the name of
an object…

… an here is its default string
representation.

Chapter 6 Others 129

Copyright Witold Jaworski, 2011.

6.4 What does contain the pydev_debug.py module?

Actually, to track the script execution in the PyDev remote debugger you need just add two following lines to

your code (Figure 6.4.1):

 import pydevd

 pydevd.settrace() #<-- debugger stops at the next statement

Figure 6.4.1 The code that loads and activates the PyDev remote debugger client

Of course, to have this code worked, you should add to the current PYTHONPATH the pydevd package folder,

before. Besides, this is just the first thing from a longer list of everything, which is needed or worth to do during

such an initialization. Hence, these two lines were expanded to a procedure named debug() (Figure 6.4.2):

'''Utility to run Blender scripts and addons in Eclipse PyDev debugger

Place this file somwhere in a folder that exists on Blender sys.path

(You can check its content in the Blender Python Console)

'''

import sys

import os

import imp

def debug(script, pydev_path, trace = True):

 '''Run script in PyDev remote debugger

 Arguments:

 @script (string): full path to script file

 @pydev_path (string): path to your org.python.pydev.debug* folder

 (in Eclipse directory)

 @trace (bool): whether to start debugging

 '''

 script_dir = os.path.dirname(script) #directory, where the script is located

 script_file = os.path.splitext(os.path.basename(script))[0] #script filename,

 # (without ".py" extension)

 #update the PYTHONPATH for this script.

 if sys.path.count(pydev_path) < 1: sys.path.append(pydev_path)

 if sys.path.count(script_dir) < 1: sys.path.append(script_dir)

 #NOTE: These paths stay in PYTHONPATH even when this script is finished.

 #try to not use scripts having identical names from different directories!

 import pydevd

 if trace: pydevd.settrace() #<-- debugger stops at the next statement

 #Emulating Blender behavior: try to unregister previous version of this module

 #(if it has unregister() method at all:)

 if script_file in sys.modules:

 try:

 sys.modules[script_file].unregister()

 except:

 pass

 imp.reload(sys.modules[script_file])

 else:

 __import__(script_file) #NOTE: in the script loaded this way:

 #__name__ != '__main__'

 #That's why we have to try register its classes:

 #Emulating Blender behavior: try to register this version of this module

 #(if it has register() method...)

 try:

 sys.modules[script_file].register()

 except:

 pass

Figure 6.4.2 The pydev_debug.py script

Preparation of the received paths,
updating of the PYTHONPATH

Starting the debugger client

Emulation of the Blender add-on
handling: unregistering the previous
version

Emulation of the Blender add-on han-
dling: registering the current version

Execution of the user script

130 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

I decided to separate the main startup code that runs the Eclipse script inside Blender, into the pydev_debug.py

module. This module contains only one procedure: debug() (Figure 6.4.2). This allowed for maximum

simplification of the Run.py code — the script template, which has to be updated for each new project (see page

58).

 Place the pydev.py module in the directory, which is present in the Blender Python path (i.e. in one of

directories listed in the content of sys.path). In Windows one of them is the folder that contains the

blender.exe file (see page 39, Figure 3.2.2), but it may be different in the Linux or Mac environments. Just

check your sys.path it in the Blender Python Console.

The whole Run.py code contains just a call to the debug() procedure, with following arguments:

 script: path to the script file that has to be executed;

 pydev_path: path to pydevd.py module (this is the PyDev remote debugger client);

 trace: optional. Set this named argument to True, when the script has to be traced in the

debuuger. Set it to False when you want just to run the script without any break. (When

trace = False, you can run this code without Eclipse — see page 124);

Notice (Figure 6.4.2) that the debug() procedure loads the user’s script module using the import statement. It

allows for debugging Blender add-ons
1
. Before the import, my program attempts to handle the previously loaded

module as the add-on, and unregister it. If this attempt fails — no error is signaled (not every script has to be a

plugin). When the new script is loaded, debug() tries to register it as a new add-on.

 When you write a Blender add-on script, from the very beginning implement the required register() and

unregister() methods. It will allow for properly handling of its Blender registration process, every time you

will press the Run Script button (see page 60).

1
 Each Blender add-on implements at least one class that derives from the corresponding base classes: bpy.types.Operator,

bpy.types.Panel, or bpy.types.Menu. It also must contain two module methods: register() and unregister(), that perform registration of

these add-on classes for the use in Blender. When the plugin is loaded, Blender calls its register() method, and when it is turned off — it

calls unregister().Then Blender itself creates, when it is needed, the instances of the registered add-on classes. (This is the typical applica-

tion model for an event-driven environment: „don’t call me, I will call you”. For example, Windows handles its applications in the same way).

That is why you have to put the breakpoints in your add-on code. When Blender creates an instance of the add-on class, and invokes one of

the class methods, they will break execution of this script into the PyDev debugger.

Chapter 6 Others 131

Copyright Witold Jaworski, 2011.

6.5 The full code of the mesh_bevel.py add-on

In subsequent chapters of this book, I have created gradually the script code of mesh_bevel.py add-on. The

fragments of its code are dispersed everywhere, in this book. However, after so many modifications it is useful

to present the final result in the "one piece". If you want to copy this text to the clipboard — beware of the tab

spacing! They are all removed, when you copy this code directly from this PDF document. It is better to

download this script file from my page.

The script does not fit into a single page, so I decided to divide it into three parts. The first part is a header that

contains the GPL information and the import statements (Figure 6.5.1):

BEGIN GPL LICENSE BLOCK #####

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

END GPL LICENSE BLOCK #####

'''

Bevel add-on

A substitute of the old, ‘destructive’ Bevel command from Blender 2.49

'''

#--- ### Header

bl_info = {

 "name": "Bevel",

 "author": "Witold Jaworski",

 "version": (1, 0, 0),

 "blender": (2, 5, 7),

 "api": 36147,

 "location": "View3D > Specials (W-key)",

 "category": "Mesh",

 "description": "Bevels selected edges",

 "warning": "",

 "wiki_url": "",

 "tracker_url": ""

 }

#--- ### Imports

import bpy

from bpy.utils import register_module, unregister_module

from bpy.props import FloatProperty

Figure 6.5.1 The mesh_bevel.py script, part 1 (the declaration)

To be continued on the next page…

http://samoloty.wjaworski.pl/downloads/pydev/mesh-bevel.zip

132 Appendices

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

The next part contains the bevel() procedure, which implements the core operation (Figure 6.5.2):

#--- ### Core operation

def bevel(obj, width):

 """Bevels selected edges of the mesh

 Arguments:

 @obj (Object): an object with a mesh.

 It should have some edges selected

 @width (float):width of the bevel

 This function should be called in the Edit Mode, only!

 """

 #

 #edge = bpy.types.MeshEdge

 #obj = bpy.types.Object

 #bevel = bpy.types.BevelModifier

 bpy.ops.object.editmode_toggle() #switch into OBJECT mode

 #adding the Bevel modifier

 bpy.ops.object.modifier_add(type = 'BEVEL')

 bevel = obj.modifiers[-1] #the new modifier is always added at the end

 bevel.limit_method = 'WEIGHT'

 bevel.edge_weight_method = 'LARGEST'

 bevel.width = width

 #moving it up, to the first position on the modifier stack:

 while obj.modifiers[0] != bevel:

 bpy.ops.object.modifier_move_up(modifier = bevel.name)

 for edge in obj.data.edges:

 if edge.select:

 edge.bevel_weight = 1.0

 bpy.ops.object.modifier_apply(apply_as = 'DATA', modifier = bevel.name)

 #clean up after applying our modifier: remove bevel weights:

 for edge in obj.data.edges:

 if edge.select:

 edge.bevel_weight = 0.0

 bpy.ops.object.editmode_toggle() #switch back into EDIT_MESH mode

Figure 6.5.2 The mesh_bevel.py script, part 2 (main procedure)

To be continued on the next page…

Chapter 6 Others 133

Copyright Witold Jaworski, 2011.

The last part of this code contains the implementation of the Bevel operator and the add-on registration (Figure

6.5.3):

#--- ### Operator

class Bevel(bpy.types.Operator):

 ''' Bevels selected edges of the mesh'''

 bl_idname = "mesh.bevel"

 bl_label = "Bevel"

 bl_description = "Bevels selected edges"

 bl_options = {'REGISTER', 'UNDO'} #Set this options, if you want to update

 # parameters of this operator interactively

 # (in the Tools pane)

 #--- parameters

 width = FloatProperty(name="Width", description="Bevel width",

 subtype = 'DISTANCE', default = 0.1, min = 0.0,

 step = 1, precision = 2)

 #--- other fields

 LAST_WIDTH_NAME = "mesh.bevel.last_width" #name of the custom scene property

 #--- Blender interface methods

 @classmethod

 def poll(cls,context):

 return (context.mode == 'EDIT_MESH')

 def invoke(self, context, event):

 #input validation: are there any edges selected?

 bpy.ops.object.editmode_toggle()

 selected = list(filter(lambda e: e.select, context.object.data.edges))

 bpy.ops.object.editmode_toggle()

 if len(selected) > 0:

 last_width = context.scene.get(self.LAST_WIDTH_NAME,None)

 if last_width:

 self.width = last_width

 return self.execute(context)

 else:

 self.report(type='ERROR', message="No edges selected")

 return {'CANCELLED'}

 def execute(self,context):

 bevel(context.object,self.width)

 context.scene[self.LAST_WIDTH_NAME] = self.width

 return {'FINISHED'}

def menu_draw(self, context):

 self.layout.operator_context = 'INVOKE_REGION_WIN'

 self.layout.operator(Bevel.bl_idname, "Bevel")

#--- ### Register

def register():

 register_module(__name__)

 bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_draw)

def unregister():

 bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_draw)

 unregister_module(__name__)

#--- ### Main code

if __name__ == '__main__':

 register()

Figure 6.5.3 the mesh_bevel.py script, part 3 (the add-on code)

134 Bibliography

Programming Add-Ons for Blender 2.5 — version 1.01 www.airplanes3d.net

Bibliography

Książki

[1] Thomas Larsson, Code snippets.Introduction to Python scripting for Blender 2.5x, free e-book,

2010.

[2] Guido van Rossum, Python Tutorial, (part of Python electronic documentation), 2011

Internet

[1] http://www.blender.org

[2] http://www.python.org

[3] http://www.eclipse.org

[4] http://www.pydev.org

[5] http://wiki.blender.org, in particular http://wiki.blender.org/index.php/Extensions:Py/Scripts

http://www.blender.org/
http://www.python.org/
http://www.eclipse.org/
http://www.pydev.org/
http://wiki.blender.org/
http://wiki.blender.org/index.php/Extensions:Py/Scripts

If you already have some programming experience and intend to write an add-

on for Blender 3D, then this book is for you!

I am showing in it, how to arrange a convenient development environment to

write Python scripts for Blender. I use Eclipse IDE, enhanced with PyDev plugin.

Both elements are the Open Source software. It is a good combination that

provides all the tools shown on the illustrations around this text.

The book contains a practical introduction to the Blender Python API. It de-

scribes the process of writing a new add-on. I discuss in detail every phase of

the implementation, showing in this way not only the tools, but also the methods

that I use. This description will allow you to gain more skill needed to write your

own scripts.

Debugger

Code Completion Python API

Project

Explorer

ISBN: 978-83-931754-2-0 Free electronic publication

	Table of Contents
	Introduction
	Conventions
	Preparations
	Chapter 1. Software Installation
	1.1 Python
	1.2 Eclipse
	1.3 PyDev

	Chapter 2. Introduction to Eclipse
	2.1 Creating a new project
	2.2 Writing the simplest script
	2.3 Debugging

	Creating the Blender Add-On
	Chapter 3. Basic Python Script
	3.1 The problem to solve
	3.2 Adapting Eclipse to the Blender API
	3.3 Developing the core code
	3.4 Launching and debugging Blender scripts
	3.5 Using Blender commands (operators)

	Chapter 4. Converting the Script into Blender Add-On
	4.1 Adaptation of the script structure
	4.2 Adding the operator command to a Blender menu
	4.3 Implementation of dynamic interaction with the user

	Appendices
	Chapter 5. Installation Details
	5.1 Details of Python installation
	5.2 Details of the Eclipse and PyDev installation
	5.3 Details of the PyDev configuration

	Chapter 6. Others
	6.1 Updating the Blender API predefinition files
	6.2 Importing an existing file to the PyDev project
	6.3 Details of the Blender scripts debugging
	6.4 What does contain the pydev_debug.py module?
	6.5 The full code of the mesh_bevel.py add-on

	Bibliography

